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Living cells contain a large number of molecular motors that convert the chemical

energy released from nucleotide hydrolysis into mechanical work. This review focusses
on stepping motors that move along cytoskeletal filaments. The behavior of these motors
involves three distinct nonequilibrium processes that cover a wide range of length and
time scales: (i) Directed stepping of single motors bound to a filament; (ii) Composite
motor walks of single motors consisting of directed stepping interrupted by diffusive
motion; and (iii) Cooperative transport by teams of several motors. On the molecular
scale, the energy conversion of these motors leads to single steps along the filaments with
a step size of about 10 nm. The corresponding chemomechanical coupling is governed by
several distinct motor cycles, which represent the dominant pathways for different val-
ues of nucleotide concentrations and load force. For the kinesin motor, the competition
of two such cycles determines the stall force, at which the motor velocity vanishes and
the motor reverses the direction of its motion. Because of thermal noise, the stepping
motors unbind from the filaments after a certain run time and run length. For kinesin,
the run time is about 1 s and the run length is about 1 µm for high ATP concentra-
tion and low load force. On length scales that are large compared to the run length, a
single motor undergoes composite walks consisting of directed stepping interrupted by
diffusive motion. The relative importance of bound and unbound motor states depends
on the binding and unbinding rates of the motors. The effective transport velocity and
diffusion coefficient of the motors are determined by the geometry of the compartments,
in which the motors move. The effective diffusion coefficient can be enhanced by several
orders of magnitude if the motors undergo active diffusion by interacting with certain
filament patterns. In vivo, stepping motors are responsible for the transport of vesicles
and other types of intracellular cargo particles that shuttle between the different cell
compartments. This cargo transport is usually performed by teams of motors. If all
motors belong to the same molecular species, the cooperative action of the motors leads
to uni-directional transport with a strongly increased run length and to a characteristic
force dependence of the velocity distributions. If two antagonistic species of motors pull
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on the cargo, they perform a stochastic tug-of-war, which is characterized by a sub-
tle force balance between the two motor teams and leads to seven distinct patterns of

uni- and bi-directional transport. So far, all experimental observations on bi-directional
transport are consistent with such a tug-of-war. Finally, the traffic of interacting motors
is also briefly discussed. Depending on their mutual interactions and the compartment
geometry, the motors form various spatio-temporal patterns such as traffic jams, and
undergo nonequilibrium phase transitions between such transport patterns.

Keywords: Molecular motors; nonequilibrium processes; chemomechanical coupling;
force generation; composite motor walks; uni-directional transport; bi-directional trans-
port; motor traffic.

1. Introduction

In each living cell, we find many different molecular motors and colloidal machines
that perform various tasks1 such as assembly and synthesis of macromolecules, ion
transport through membranes, cargo transport along filaments, cell division, and
cell locomotion. These motors and machines act as little ‘demons’ or ‘nanorobots’
that keep the living cell in a highly ordered state far from equilibrium. This self-
organization is based on the energy conversion of the motors, which transform
chemical energy into mechanical work.

In most cases, the molecular motor consists of a protein complex that interacts
with another colloidal structure such as a macromolecule, membrane, or filament.
Prominent examples are: (i) DNA and RNA polymerases, which move along the
strands of DNA in order to replicate it and to transcribe it into RNA; (ii) ribo-
somes that attach to mRNA and translate the nucleotide sequence into proteins;
(iii) membrane pumps, which transport ions and small molecules across membranes;
(iv) myosins in muscles, which work in ensembles and collectively displace actin fil-
aments; and (v) cytoskeletal motors, which bind to the filaments of the cytoskeleton
and then walk along these filaments in a directed fashion.

In all of these examples, the motors are powered by the hydrolysis of adeno-
sine triphosphate (ATP). Thus, these motors represent ATPases, i.e., catalysts or
enzymes for the hydrolysis of ATP. This hydrolysis process consists of several sub-
steps: first, ATP is cleaved into ADP/P, i.e., bound adenosine diphosphate (ADP)
and inorganic phosphate (P), then the P is released from the motor, and finally the
ADP is typically released as well. For the concentrations that prevail in living cells,
the ATP hydrolysis is strongly exergonic or ‘downhill’ but it is also quite slow in
the absence of any enzymatic activity. The motors act as enzymes for this chemical
reaction which leads to much faster hydrolysis rates. In addition, these motors are
also able to transform the chemical energy released from the ATP hydrolysis into
useful work.

In this review, we will focus on cytoskeletal motors such as kinesin, see
Fig. 1(a), that walk processively along cytoskeletal filaments in a directed manner
and are essential for intracellular transport, cell division, and cell locomotion.2–4

Three superfamilies of processive cytoskeletal motors have been identified: kinesins,
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Fig. 1. Stepping motors: (a) Microtubule with one dynein (violet) and one kinesin (blue) motor.
The filament consists of tubulin dimers that provide a lattice of binding sites with a lattice
parameter of 8 nm. (b) Actin filament with one myosin VI (violet) and one myosin V (blue)
motor. Both filaments are polar and have two different ends, a plus and a minus end. Each motor
walks either towards the plus or the minus end as indicated.

dyneins and myosins.4, 5 Kinesins and dyneins bind to microtubules as shown in
Fig. 1(a) whereas myosins bind to actin filaments as shown in Fig. 1(b).

The movements of cytoskeletal motors cover many length and time scales.6, 7

Already for a single motor, one can distinguish three dynamical regimes: the single-
step dynamics of the motor protein which arises from the coupling of the molecular
conformation to ATP hydrolysis; the directed walks of the motor along the fila-
ments; and the composite walks of the motor as it repeatedly unbinds from and
rebinds to the filaments.

The single-step regime covers all molecular processes up to a single mechanical
step of the motor. Kinesin, for example, walks in a ‘hand-over-hand’ fashion, i.e.,
by alternating steps, in which one head moves forward while the other one remains
bound to the filament.8, 9 Each step corresponds to a motor displacement of 8 nm
corresponding to the lattice constant of the microtubule. These mechanical steps
of kinesin are fast and completed within 15µs.10

Kinesin exhibits tight coupling, i.e., it hydrolyzes one ATP molecule per mechan-
ical step.11 After ATP has been hydrolyzed by one of the catalytic motor domains,
the inorganic phosphate is released rather fast, and both transitions together take
of the order of 10ms to be completed.12 ADP is subsequently released from the
catalytic domain, and this release process is also completed during about 10ms.13

Thus, these chemical transitions take much longer than the mechanical steps. When
the catalytic domain of one motor head is occupied by ADP, this head is only loosely
bound to the microtubule14–16 and most likely to unbind from it.

We have recently developed a general theoretical framework for this chemome-
chanical coupling which shows that the single-step regime is governed by several
competing motor cycles.17, 18 For kinesin, we have identified three cycles that domi-
nate the single-step dynamics depending on the ATP, ADP, and P concentrations as
well as on the load force.19, 20 The corresponding network of motor cycles provides
a unified description for all motor properties that have been determined by single
molecule experiments. For kinesin, the experimentally observed properties include
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motor velocity,10, 21, 22 bound state diffusion coefficient (or randomness parame-
ter),21 ratio of forward to backward steps,10 dwell time distributions,10 and run
length23 as functions of ATP concentration and load force as well as motor velocity
as a function of P and ADP concentration.24

The directed stepping regime corresponds to the directed walks of the motor
along the filament. Because of thermal noise, the motor makes, on average, a certain
number of steps before it detaches from the filament. A single kinesin motor, for
example, unbinds from the filament after the motor has made about a hundred
steps, i.e., after a run length (or walking distance) of about 1 µm.25 On length
scales that are large compared to its run length, a single motor undergoes composite
walks consisting of directed (or biased) motion along the filaments interrupted by
diffusive (or random) motion in the surrounding solution.26–29

The run length of single motors is rather small compared to the long dis-
tances — centimeters or even meters — over which cargo particles such as vesicles
or organelles are transported in cells and axons, see Fig. 2. One rather effective way
to increase the run length is via cooperative transport of cargo particles by several
motor molecules.30 The corresponding run length distribution has been recently
measured for two different in vitro assays.31, 32

In eukaryotic cells, vesicles and other cargo particles, which are trans-
ported along microtubules, often carry both kinesins and dyneins which leads
to bi-directional transport along the filaments.33–35 The experimental observa-
tions for this type of transport are rather complex. The cargo may exhibit rather
different types of trajectories with and without pauses between forward and back-
ward motion. In addition, changing the molecular structure of one motor species
often affects the movement in both directions. Therefore, it was proposed that this
behavior reflects the coordination by an unknown protein complex attached to the
cargo. However, we have recently shown that all experimental observations can be
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Fig. 2. Two-way traffic in an axon. The traffic is based on microtubules, which provide the tracks,
and different types of cytoskeletal motors, which move along these filaments. Each motor species
moves either towards the axon terminal (plus direction) or towards the cell body (minus direction).
Small teams of motors pull vesicles and other types of cargo over macroscopic distances.
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explained by a stochastic tug-of-war between the two motor species.35 This implies
that the signalling pathways that control intracellular transport may directly target
the different motor molecules rather than an additional coordination complex.35, 36

The cartoon in Fig. 2 indicates that the traffic within an axon can be rather
dense and, thus, may lead to traffic jams as one would expect theoretically.27, 37–39

There is indeed some experimental evidence for jams of motor particles in axons
(W. Saxton, private communication). An extreme case has been induced by muta-
tions of the motor proteins which led to strong swelling of axons.40, 41 Jams of
kinesin-like motors have also been observed in fungal hyphae as one varied the
motor concentration in vivo by changing the level of expression of the correspond-
ing gene.42, 43 Recently, motor traffic jams have also been observed in several in
vitro experiments.44–47 Apart from crowding and traffic jams, the mutual interac-
tion between motors and filaments leads to nonequilibrium phase transitions as has
been shown theoretically both for stepping motors on immobilized filaments37, 38, 48

and for gliding filaments on immobilized motors.49, 50

This review is organized as follows. The movements of single motors up to
their run length are discussed in Sec. 2. The composite walks of single motors
on larger length scales, are considered in Sec. 3. The effective diffusion coef-
ficient of these walks can be enhanced by several orders of magnitude if the
motors are in contact with certain filament patterns. Sec. 4 describes the coop-
erative transport of nanometer- or micrometer-sized cargo particles by several
molecular motors. If all motors belong to the same molecular species, the coop-
erative action of the motors leads to uni-directional transport with a strongly
increased run length, to the generation of larger forces, and to a characteris-
tic force dependence of the velocity distributions, see Sec. 4.1. If two species of
motors pull on the cargo in opposite directions, they perform a stochastic tug-
of-war as described in Sec. 4.2. This tug-of-war leads to seven distinct motility
regimes, two of which exhibit fast bi-directional transport. As mentioned, the com-
plex experimental observations on bi-directional transport are all consistent with
such a tug-of-war. Finally, the traffic of interacting motors and cargo particles
is briefly discussed in Sec. 5. Depending on their interactions and the compart-
ment geometry, the motors form various spatio-temporal patterns such as traffic
jams and undergo nonequilibrium phase transitions between different patterns of
transport.

2. Directed Stepping of Single Motors

In this section, the stepping regime of single motors up to their run length will be
considered. First, we address the chemomechanical coupling between ATP hydrol-
ysis and mechanical steps and describe a systematic theoretical framework for this
coupling. This framework incorporates the catalytic ATPase activity of the motor
domains as well as basic thermodynamic constraints. When applied to kinesin, it
leads to a unified description of all single molecule data that have been obtained on
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this motor. In addition, this framework also reveals that kinesin and other cytoskele-
tal motors are governed by several competing motor cycles.

2.1. Thermodynamics of single motors

Let us consider a single motor molecule bound to a filament that is embedded
in a large amount of water at constant temperature T . During ATP hydrolysis,
the motor binds ATP from the aqueous solution and releases ADP and P to it. In
addition, the motor may experience a load force F arising, e.g., from an optical trap.
From the thermodynamic point of view, such a motor can be treated as a small
system that is coupled to several reservoirs: (i) A heat reservoir at temperature T ;
(ii) A work reservoir characterized by the load force F ; and (iii) Particle reservoirs
for the chemical species X = ATP, ADP, and inorganic phosphate P. These different
types of reservoirs are displayed in Fig. 3.

The motor is taken to be in thermal equilibrium with its environment, i.e., the
motor is characterized by the same temperature T as the surrounding solution. The
heat exchanged between the motor and the reservoir will be denoted by Q. We use
the sign convention that the exchanged heat Q is positive if it increases the internal
energy of the reservoir. Thus, Q > 0 corresponds to heat release from the motor to
the reservoir.

Interaction of the molecular motor with the work reservoir is governed by the
load force F . This force acts parallel to the filament and is taken to have a constant
value independent of the spatial position of the motor. We use the sign convention
that F is positive if it acts against the prefered movement of the motor.a If the motor
moves by the distance � in its prefered direction along the filament, it performs the
mechanical work

Wme = �F > 0 for F > 0. (2.1)

Fig. 3. Thermodynamic view of a molecular motor that is coupled to several reservoirs: a heat
reservoir at temperature T ; particle exchange reservoirs for ATP, ADP, and P with chemical
potentials µ(ATP), µ(ADP), and µ(P); and a work reservoir governed by load force F . The motor
is always taken to be in thermal equilibrium at temperature T but can be in chemical equilibrium
or nonequilibrium depending on the size of the three chemical potentials. Mechanical equilibrium
corresponds to F = 0.18

aThis sign convention must be modified if one considers the action of both plus and minus directed
motors, see Sec. 4.2.3 below.
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Mechanical equilibrium between motor and work reservoir corresponds to F = 0.
In general, the external force as applied in single molecule experiments is a 3-

dimensional vector with one component parallel to the filament defining the load
force and additional components acting perpendicular to this filament. Since the
motor does not perform mechanical work against the perpendicular force compo-
nents, the latter components do not represent thermodynamic control parameters,
even though they can affect the motor dynamics.18

The exchange equilibria between the motor and the reservoirs for the chemical
species X = ATP, ADP, and P are governed by the corresponding chemical poten-
tials, µ(X). The activity of X will be denoted by [X ] and is equal to the molar
concentration in the limit of dilute solutions. In the following, we will use the term
‘concentration’ to be a synonym for ‘activity’. For each activity [X ], we choose the
activity scale [X ]∗ in such a way that the chemical potential µ(X) has the simple
form

µ(X) = kBT ln([X ]/[X ]∗) (2.2)

with the Boltzmann constant kB .b

When the motor hydrolyzes a single ATP molecule, it binds one such molecule
and releases one inorganic phosphate P and one ADP molecule. According to the
Gibbs fundamental form of thermodynamics, the corresponding change in internal
energy of the motor is given by the chemical energy difference

∆µ = µ(ATP) − µ(P) − µ(ADP) (2.3)

which also represents the chemical energy input from the aqueous solution to the
motor molecule. Using the expression (2.2) for the three chemical potentials, we
then obtain

∆µ = kBT ln
(

[ATP]
[ADP][P]

Keq

)
with Keq ≡ [ADP]∗[P]∗

[ATP]∗
(2.4)

which defines the equilibrium (dissociation) constant Keq. Chemical equilibrium
between ATP hydrolysis and ATP synthesis corresponds to ∆µ = 0 which implies

Keq =
[ADP][P]

[ATP]

∣∣∣∣
eq

. (2.5)

For dilute solutions, the activities of the three chemical species are equal to their
molar concentrations and can be directly measured, at least in principle (after the
system has relaxed into chemical equilibrium). For ATP hydrolysis, the precise value
of the equilibrium constant Keq depends on the ionic conditions but a typical value

bIn general, the activity [X] is defined in such a way that the chemical potential µX for the
chemical species X has the simple form µX ≡ µo

X + kBT ln([X]/[X]o) where the superscript o
refers to some standard or reference activity [X]o. This relation can be rewritten in the form
[X]oe−µo

X /kBT = [X]e−µX/kBT which holds for any reference state. Therefore, the right hand
side of this equation can be used to define the activity scale [X]∗ ≡ [X]e−µX/kBT which has a
unique value independent of the reference activity [X]o.
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is given by Keq = 4.9× 1011 µM.24, 51 Thus, in thermal equilibrium at temperature
T , a single molecular motor is governed by four thermodynamic control parameters,
namely the three activities or concentrations [X ] with X = ATP, ADP, and P as
well as the load force F or, equivalently, the three chemical potentials µ(X) and F .

Since the chemical energy input ∆µ as given by (2.4) depends on all three
concentrations [ATP], [ADP], and [P], the limit, in which one of these concentrations
becomes small, is not defined unless one specifies the two remaining concentrations
as well. If one considers the limit of small [ATP] for fixed [ADP] and [P], for example,
the chemical energy input ∆µ goes to minus infinity. Likewise, if one considers
the limit of small [ADP] and/or small [P] for fixed [ATP], the energy input ∆µ

goes to plus infinity. Furthermore, if all three concentrations become small with
[ATP] ≈ [ADP][P]/K with a certain, fixed activity or concentration K, ∆µ attains
the limiting value ∆µ = ln(Keq/K). Thus, even if all three concentrations vanish
simultaneously, the limiting value of ∆µ depends on how they vanish.

In the absence of ATP, ADP, and P, the motor does not obtain any chemical
energy and, thus, cannot perform any mechanical work. Thus, one would like to
view this situation as a limiting case of chemical equilibrium with ∆µ = 0. The
latter value is obtained if all three concentrations vanish simultaneously with the
constraint that [ATP] ≈ [ADP][P]/Keq.

2.2. Enzymatic activity of motor molecules

For a given position at the filament, the molecular motor can attain many molecular
conformations, which differ in the chemical composition of their catalytic domains
and in thermally excited vibrational modes. Since we want to describe the hydrolysis
of single ATP molecules, we will use a discrete state space and focus on the different
chemical compositions of the catalytic domains. From a mathematical point of view,
the chemical composition of the catalytic domains provides an equivalence relation
that divides the molecular configurations of the motor into mutually distinct sets
or equivalence classes.

We start with a single catalytic domain as shown in Fig. 4(a) and (b). Such a
catalytic domain can be occupied by a single ATP molecule, by the combination
ADP/P, by a single ADP molecule, or can be empty. In this way, each catalytic
domain can attain 4 different states, as shown in Fig. 4(a) where these states are
represented as vertices in a network graph. Such a representation was previously
used by T. L. Hill52 for a generic ATPase. The edges between the different chemical
states in Fig. 4(a) represent forward and backward transitions. The edge between
state i and state j will be denoted by 〈ij〉. It consists of two directed edges or
di-edges, |ij〉 and |ji〉, corresponding to the forward transition from i to j and to the
backward transition from j to i, respectively. Thus, the di-edge or transition |ET〉
corresponds to ATP binding to the catalytic domain whereas the transition |TE〉
represents ATP release from this domain. Likewise, the transitions |ΘD〉, |DΘ〉,
|DE〉, and |ED〉 describe P release, P binding, ADP release, and ADP binding,
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Fig. 4. Chemical networks (a, b) for a single catalytic motor domain acting as an ATPase, and
(c) for a motor with two catalytic motor domains. In (a), the catalytic motor domain can be empty
(E), occupied by ATP (T), by ADP/P (Θ), or by ADP (D). In (b), the cleavage transition |TΘ〉
and the P release transition |ΘD〉 have been combined into the single transition |TD〉 leading to a
reduced network with the three states E, T, and D. In (c), the same three states are accessible to
each motor domain which implies a chemical network with 32 = 9 states. Each solid line between
two vertices i and j corresponds to both the forward chemical transition |ij〉 and the backward
chemical transition |ji〉. Thus, the 9-state network in (c) contains 18 forward and 18 backward
transitions.

respectively. Finally, the transition |TΘ〉, corresponds to ATP cleavage and the
transition |ΘT〉 to ATP synthesis from the ADP/P state.

The three edges 〈ET〉, 〈ΘD〉, and 〈DE〉 involve the binding and release of a
certain molecular species from the aqueous solution. In contrast, the edge 〈TΘ〉 in
the 4-state network does not involve such an interaction of the catalytic domain
with the particle reservoir, see Fig. 4(a). Therefore, one may combine the two edges
〈TΘ〉 and 〈ΘD〉 of the 4-state network into the edge 〈TD〉 as shown in Fig. 4(b).
The latter representation involves only 3 states: the motor head is occupied by
ADP in state D, empty in state E, and occupied by ATP in state T. This reduced
representation can be defined in such a way that the 3-state and the 4-state network
describe the same energy transduction process as shown in Ref. 18.

Next, we consider a two-headed motor such as kinesin or myosin V with two
identical catalytic motor domains. If each motor domain can attain three different
chemical states as in Fig. 4(b), the two-headed motor can attain 32 = 9 different
states as in Fig. 4(c).19

It is straightforward to generalize these considerations to a molecular motor
with M catalytic domains. In this case, the different chemical compositions of the
motor domains define 3M motor states, which are represented by 3M vertices. Each
of these vertices is connected to 2M other vertices via chemical transitions, i.e.,
each vertex has ‘chemical degree’ 2M . As a result, one obtains a network with
M3M chemical edges, each of which represents both a forward and a backward
chemical transition. This network represents an M -dimensional hypercube with
periodic boundary conditions.

2.3. Chemomechanical coupling

Next, we must complement the chemical network as shown in Fig. 4(c) by mechan-
ical transitions that represent the spatial displacements of the motors along the
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filaments. We will now use the convention that, for each state in Fig. 4(c), the right
head is the leading head whereas the left head is the trailing head with respect to
the prefered direction of the motor movement.

2.3.1. Network representations

Both the kinesin motor8, 9 and the myosin V motor53 walk in a hand-over-hand
fashion, i.e., by alternating steps, in which one head moves forward while the other
one remains bound to the filament. In addition, recent experiments10 provide strong
evidence for the kinesin motor that the time scales for the mechanical and chemi-
cal transitions are well separated: the mechanical transitions are completed within
a few microseconds whereas the chemical transitions take many milliseconds. If
we incorporate these two properties into the network representation, we obtain
nine possible mechanical transitions as shown in Fig. 5. For myosin V, the motor
undergoes two54 or three55 mechanical substeps which implies that some of the
chemical states are located at intermediate positions between the binding sites of
the filament.

In principle, one may now construct a variety of chemomechanical net-
works by including different subsets of the possible mechanical transitions
shown in Fig. 5(a)–5(c). In general, this would lead to many possible path-
ways, a viewpoint that has been previously emphasized for somewhat differ-
ent network representations56, 57 that did not include the chemical species ADP
and P. In practise, the chemomechanical networks obtained from Fig. 5(a)–
5(c) can be simplified substantially as has been explicitly shown for kinesin in
Ref. 19.

For kinesin, the T and the E state of each motor head are strongly bound
whereas the D state is only weakly bound to the filament.14–16 In order to make a
forward mechanical step, the trailing head must detach from the filament whereas
the leading head must be firmly attached to it. It is then implausible that the motor
starts its mechanical step from any state in which the trailing head is strongly
bound and/or the leading head is weakly bound to the filament. This implies that
the motor is unlikely to undergo this transition from the (ED), (TD) or (DD) states
as well as from the (ET), (TE), (EE), or (TT) states. One is then left with only two
possible mechanical transitions in the forward direction, from state (DE) to state
(ED) and from state (DT) to (TD).

If the motor underwent its mechanical transition starting from the (DE) state,
this mechanical transition would compete with the transition from (DE) to (DT).
Since the transition rate for the latter transition increases with the ATP concentra-
tion, the frequency for the (DE) to (DT) transition would increase and the frequency
for the (DE) to (ED) transition would decrease with increasing ATP concentration.
Therefore, if the motor underwent its mechanical transition from (DE) to (ED), its
velocity would decrease for high ATP concentration. Since such a decrease of motor
velocity with ATP concentration is not observed experimentally, one concludes that
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Fig. 5. Possible mechanical transitions or steps between the chemical motor states at different
binding sites of the filament. In principle, one has nine such transitions starting from the nine

chemical motor states. For the sake of clarity, these nine possibilities have been divided up into
three subgroups in subfigures (a), (b), and (c). The thick double-lines at the bottom of each
subfigure represent the filament, the three bullets on these lines three filament binding sites.
The motor can attain nine chemical states at each binding site. The solid and broken lines of
the networks correspond to chemical and mechanical transitions, respectively. The arrows (red)
indicate the forward direction of the mechanical transitions. The chemical networks have been
drawn as square lattices with periodic boundary conditions; the stubs correspond to additional
chemical transitions that connect the boundary states of these square lattices.

the mechanical forward transition of kinesin corresponds to the transition from the
(DT) to the (TD) state.c Thus, kinesin should be governed by the chemomechanical
network in Fig. 6 as proposed in Ref. 19.

cIn principle, the motor could also undergo the (DT) to (TD) transition with high frequency and
(DE) to (ED) transition with low freqency but, at present, there is no experimental evidence for
such a more complex stepping process.
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Fig. 6. Mechanical forward transition from state (DT) to state (TD) that should dominate for
kinesin.
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Fig. 7. Chemomechanical networks for the processive motion of kinesin with chemical (solid lines)
and mechanical (broken lines) transitions: (a) Compact representation of the periodic network in
Fig. 6; (b) Reduced 7-state network without the most strongly bound motor states (TT) and
(EE); and (c) Reduced 6-state network without the most weakly bound motor state (DD). The
white double-arrows indicate the direction of ATP hydrolysis, the black arrows the direction of
mechanical forward steps.19

A more compact and equivalent representation for the kinesin network in Fig. 6
is shown in Fig. 7(a). Indeed, to each trajectory in the periodic network of Fig. 6,
there is a corresponding trajectory in the compact network of Fig. 7(a) and vice
versa. In addition, the spatial displacement along the filament can be recovered
from the trajectories in the compact network of Fig. 7(a) by simply counting the
number of forward and backward mechanical transitions from (DT) to (TD) and
from (TD) to (DT), respectively.

The chemomechanical network as shown in Fig. 7(a) contains 36 chemical for-
ward and backward transitions in addition to the forward and backward mechanical
transitions. On the one hand, it is not possible at present to uniquely determine
all of these rates from the available experimental data. On the other hand, it turns
out that all of these data can be quantitatively described by the reduced 7-state
network in Fig. 7(b) in which the two most strongly bound states (TT) and (EE)
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have been omitted. Indeed, it is a priori unlikely that the motor visits these two
states during its processive motion. An even simpler description is obtained if one
ignores the (DD) state as well which leads to the 6-state network in Fig. 7(c).
The latter network is sufficient to describe all single motor data currently avail-
able apart from the strong reduction of the motor velocity with increasing ADP
concentration.19

2.3.2. Cycles and dicycles

The previous subsections provided some examples for the description of molecu-
lar motors in terms of a discrete state space. These states are represented as the
vertices of a network graph, G, and are labeled by i = 1, 2, . . . , |G|. Two neigh-
boring states i and j are connected by an edge 〈ij〉 which represents the two
directed edges or transitions |ij〉 and |ji〉. Inspection of Fig. 7(a)–7(c) shows that
these edges form cycles. These cycles are particularly important in the present
context since they are intimately related to fluxes and nonequilibrium steady
states.

In order to be precise, we will distinguish (undirected) cycles from directed cycles
or dicycles. The smallest dicycle consists of three states and three di-edges. An
(undirected) cycle Cν is given by a closed sequence of neighboring vertices together
with connecting edges, in which each vertex and each edge occurs only once. Each
cycle Cν leads to two dicycles Cd

ν with d = ±.
The network description of a single motor head, see Fig. 4 (a,b), involves only

a single cycle. Analogous unicycle models have also been frequently used for two-
headed motors. Inspection of Fig. 7 shows, however, that these two-headed motors
will, in general, exhibit several motor cycles. The 9-state network in Fig. 7(a)
involves a rather large number of cycles (more than 200). In contrast, the 6-state
network in Fig. 7(c) contains only three cycles: the forward cycle F = 〈25612〉, the
backward cycle B = 〈52345〉, and the dissipative slip cycle D = 〈1234561〉.

2.3.3. Energy balance conditions

Each dicycle Cd
ν can be characterized by several energies: the chemical energy

∆µ(Cd
ν ) that the motor gains during the completion of Cd

ν , the mechanical work
Wme(Cd

ν ) that it performs during this completion, and the heat Q(Cd
ν ) that it releases

to its environment or heat reservoir. These different energies satisfy the energy bal-
ance relation

∆µ(Cd
ν ) − Wme(Cd

ν ) = Q(Cd
ν ) (2.6)

as follows from the first law of thermodynamics.
In order to obtain a quantitative model for the motor dynamics, one has to

specify the transition rates ωij for transitions |ij〉 between the motor states i and



April 30, 2009 15:34 WSPC/204-BRL 00094

90 R. Lipowsky et al.

j. As shown in Refs. 17 and 18, the released heat Q(Cd
ν ) is related to the transition

rates ωij by

Q(Cd
ν ) ≡ kBT Q̄(Cd

ν ) = kBT ln
(

Πω(Cd
ν )

Πω(C−d
ν )

)
(2.7)

with the transition rate products

Πω(Cd
ν ) ≡

∏
|ij〉

ν,d
ωij , (2.8)

where the product includes all directed edges or transitions of the dicycle Cd
ν . The

energy balance relation (2.7) is consistent with the proposal in Ref. 58 that the
entropy produced during a single transition is equal to kBT ln(ωij/ωji). This rela-
tion can also be rewritten in a form that is reminiscent of the various fluctuation
theorems for entropy fluctuations59–62 as explained in Ref. 18.

A combination of the relations (2.6) and (2.7) then leads to the dicycle balance
conditions17, 18

kBT ln
(

Πω(Cd
ν )

Πω(C−d
ν )

)
= ∆µ(Cd

ν ) − Wme(Cd
ν ) (2.9)

for the transition rates ωij . Indeed, the chemical energy ∆µ(Cd
ν ) can be expressed

in terms of the chemical energy difference ∆µ obtained from the hydrolysis of a
single ATP molecule as given by (2.3), and the mechanical work Wme(Cd

ν ) depends
on the load force F and on the step size �, compare (2.1). Therefore, the balance
conditions (2.9) represent thermodynamic constraints on the kinetics. Note that
the balance conditions for C+

ν and C−
ν differ only by an overall sign and are, thus,

linearly dependent. In fact, the number of linearly independent balance conditions
is equal to the number of fundamental cycles of the network.

2.3.4. Motor dynamics for processive stepping

For the 6-state network of kinesin as displayed in Fig. 7(c), one has three cycles
and two fundamental ones; for the 7-state network in Fig. 7(b) without the two
dotted edges, one has six cycles and three fundamental ones. When these networks
are supplemented by the associated balance conditions, one obtains a rather good
description for all properties of the kinesin motor as experimentally observed in
single motor experiments.19 In these experiments, the average motor velocity v has
been measured as a function of the ATP, ADP, and P concentrations as well as of
the load force F . The latter dependence is shown in Fig. 8(a) with the experimental
data of Carter and Cross10 and the result of the network calculations as obtained
in Ref. 19. Inspection of Fig. 8(a) shows very good agreement between theory and
experiment. Likewise, the network calculations provide a very good description for
the data reported in Refs. 21–24.
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Fig. 8. (a) Average motor velocity v and (b) forward to backward step ratio q for the kinesin
motor as a function of load force F for two different values of the ATP concentration. The experi-
mental data are from Ref. 10. The solid lines are from Ref. 19 and have been calculated using the
chemomechanical networks in Figs. 7(b) and 7(c). At the stall force F = Fs � 7 pN indicated by
the vertical dotted line, the velocity v vanishes and the step ratio q = 1.

Another important consequence of the balance conditions (2.9) is that they
determine the general form of the dicycle excess fluxes in the steady state. The
latter fluxes are defined via17, 18

∆J st(Cd
ν ) ≡ J st(Cd

ν ) − J st(C−d
ν ), (2.10)

i.e., by the difference of the steady state dicycle fluxes J st(Cd
ν ) with d = ±. The

dicycle fluxes have the general properties

J st(Cd
ν ) > 0 and J st(Cd

ν ) ∝ Πω(Cd
ν ) (2.11)

with a proportionality factor that depends only on the cycle Cν but not on its direc-
tion d = ± as can be explicitly shown using the graph-theoretic or diagrammatic
solution for the steady state probabilities (often refered to as the Kirchhoff method).
Using the relation between the transition rate products Πω and the released heat
Q(Cd

ν ) as given by (2.7), one concludes that the dicycle excess fluxes have the generic
form

∆Jst(Cd
ν ) = [1 − e−Q̄(Cd

ν )]J st(Cd
ν ). (2.12)

Since the flux J st(Cd
ν ) is always positive, the expression (2.12) for the dicycle excess

flux implies that

sign of ∆Jst(Cd
ν ) = sign of Q̄(Cd

ν ) (2.13)

and that

∆J st(Cd
ν ) = 0 if and only if Q̄(Cd

ν ) = 0, (2.14)

i.e., the dicycle excess flux ∆J st(Cd
ν ) vanishes for those values of the thermodynamic

control parameters for which the released heat Q̄(Cd
ν ) vanishes.

Since the released heat Q̄ is a thermodynamic quantity, thermodynamics alone
determines the sign and the zeros of all dicycle excess fluxes ∆Jst(Cd

ν ) in the steady
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state. Many experimentally accessible quantities such as the motor velocity and
the ATP hydrolysis rate correspond to linear combinations of the dicycle excess
fluxes. Using the above mentioned properties of the dicycle excess fluxes both for
the motor velocity and the ATP hydrolysis rate, one can identify four different
operation modes for kinesin.63

2.3.5. Motor velocity and stall force

The force-velocity relationship as shown in Fig. 8(a) for kinesin represents an impor-
tant property of all stepping motors. In Fig. 8(a), we used the convention that the
force F is positive if it decreases the probability that the motor makes forward
steps. As long as we consider single motors, this convention will be used for any
motor species irrespective of its preferential stepping direction. If the force acts
simultaneously on plus directed and minus directed motors, we need to modify this
convention, see Sec. 4.2 below. Inspection of Fig. 8(a) shows that the motor velocity
decreases with increasing load force F and vanishes at a characteristic force scale,
the stall force F = Fs. Intuitively, one may view this stall force as the maximal
force that can be generated by the motor.

For the kinesin networks in Figs. 7(b) and 7(c), the parameter dependence of
this stall force can be determined explicitly. In these networks, the motor velocity
is proportional to the excess flux ∆Jst

25 = P st
2 ω25 − P st

5 ω52 from state 2 to state 5
with the steady state probabilities P st

2 and P st
5 to find the motor in state 2 and 5,

respectively. For the 6-state network in Fig. 7(c), one then has19

v = �∆Jst
25 = �[∆Jst(F+) − ∆J st(B+)] (2.15)

with the step size � and the two dicycles F+ = |25612〉 and B+ = |23452〉. For the
transition rates as chosen in Ref. 19, the motor velocity vanishes at the rescaled
stall force

F̄s ≡ �Fs

kBT
= ln

(
eF̄∞ + e−∆µ̄

1 + eF̄∞−∆µ̄

)
(2.16)

with ∆µ̄ ≡ ∆µ/kBT and F̄∞ ≡ ln[ω25(F = 0)/ω52(F = 0)]. The relation (2.16)
leads to the asymptotic behavior

F̄s ≈ F̄∞ for large ∆µ̄ (2.17)

and

F̄s ≈ eF̄∞ − 1
eF̄∞ + 1

∆µ̄ for small ∆µ̄. (2.18)

Since kBT/� = 0.5 pN at room temperature, the value F∞ � 7 pN as determined
experimentally10, 21 implies F̄∞ � 14. An explicit expression for the stall force can
also be obtained for the 7-state network in Fig. 7(b). In fact, analyzing both the
motor velocity and the ATP hydrolysis rate, one can identify four different operation
modes for kinesin as described in Ref. 63.
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2.3.6. Dwell time distributions for mechanical steps

In single motor experiments using optical traps, one can observe the spatial position
of the motor as a function of time. For low ATP concentrations, the motor dwells in
a certain position along the filament and, then, makes a fast mechanical transition
to a new spatial position. If one measures many dwell times between successive
mechanical transitions, one obtains the dwell time distributions of the motor.

As pointed out in Ref. 20, there are, in fact, four different dwell time distribu-
tions corresponding to the four possible pairs of subsequent forward and backward
steps, namely forward-after-forward steps, forward-after-backward steps, backward-
after-forward steps, and backward-after-backward steps. For kinesin, these dwell
time distributions have been calculated starting from the 6-state network in
Fig. 7(c).20 Two of these four distributions are displayed in Fig. 9. Inspection of
this figure shows that these distributions have a strongly non-exponential character
reflecting the underlying network dynamics involving chemical transitions between
the different motor states.

The dwell time distributions for kinesin can be calculated from the extended
network in Fig. 10 which is obtained from the 6-state network in Fig. 7(c) by the
addition of the two absorbing states j = 2′ and j = 5′. On this extended network,
the motor starts in the initial state i = 5 after a forward step or in the initial state
i = 2 after a backward step. One then considers the probability Pij(t) that the
motor is ‘absorbed’ after time t in state j = 5′ corresponding to a final forward
step or in state j = 2′ corresponding to a final backward step.

The corresponding absorption times tabi|j are governed by the probabilities20

Pr{tabi|j ≤ t} =
∫ t

0

duρab
i|j(u) (2.19)

Fig. 9. (a) Probability distribution ρff for the dwell time tff of mechanical forward-after-forward
steps, i.e., the dwell time between two successive forward steps; and (b) Probability distribution
ρbf for the dwell time tbf of mechanical forward-after-backward steps. In both cases, one curve
corresponds to vanishing load force F = 0 (as indicated), the other to F = Fs, i.e., the load force
being equal to the stall force. In addition, the motor dynamics leads to the probability densities
ρfb und ρbb for backward-after-forward steps and backward-after-backward steps, respectively.20



April 30, 2009 15:34 WSPC/204-BRL 00094

94 R. Lipowsky et al.

Fig. 10. Extended (6+2)-state network for kinesin as obtained from the 6-state network in
Fig. 7(c) by adding the two adsorbing states j = 2′ and j = 5′. The motor undergoes a forward-
after-forward step if it starts initially in state i = 5 and is subsequently ‘absorbed’ in state j = 5′.
Likewise, the motor undergoes a forward-after-backward step if it starts initially in state i = 2
and is subsequently ‘absorbed’ in state j = 5′.

with the probability distributiond

ρab
i|j(t) =

∂

∂t
Pij(t)/P st

ij , (2.20)

where P st
ij is the steady state solution for the probability Pij(t). Thus, the two

probability distributions ρff and ρbf as displayed in Fig. 9 are obtained from the
relations20

ρff(t) =
∂

∂t
P55′(t)/P st

55′ and ρbf(t) =
∂

∂t
P25′(t)/P st

25′ ; (2.21)

the two remaining dwell time distributions ρfb and ρbb for backward-after-forward
steps and backward-after-backward steps can be calculated in an analogous fashion.

Linear combinations of the four dwell time distributions ρff , ρbf , ρfb, and ρbb

determine the probability distributions for forward and backward steps.20 For
kinesin, the latter distributions have been determined experimentally.10 More pre-
cisely, these distributions have been measured for dwell times that exceed a certain
small time cutoff that varies between 0.01 and 0.1 s depending on ATP concen-
tration and load force. As shown in Ref. 20, these experimental data are very
well described by the theoretical distributions as calculated for the 6-state network
of kinesin. This agreement is quite remarkable since all transition rates used in
this calculation have been obtained in Ref. 19 without any reference to the dwell
time distributions. Thus, the agreement between theory and experiment is obtained
without any additional fitting parameter.

2.4. Unbinding rate and run length

The processive motors displayed in Fig. 1 can make many successive steps cor-
responding to many successive motor cycles. However, even if the motor’s binding

dIn mathematics, the quantity ρab
i|j(t) is called a probability density function.
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energy is large compared to the thermal energy kBT , thermal fluctuations will even-
tually lead to an unbinding of the motor from the filament. Thus, a single motor
can be characterized by its average run time 〈∆t〉 and the corresponding unbinding
rate

ωoff ≡ 1/〈∆t〉. (2.22)

During its run time, the single motor steps along the filament and covers the average
run length

〈∆x〉 = v〈∆t〉. (2.23)

In the absence of load, kinesin motors bound to microtubules make about 100
successive steps25 which corresponds to an average run length 〈∆x〉 � 1µm and
an average run time 〈∆t〉 � 1 s. In the absence and presence of dynactin, an
accessory protein, dynein motors make about 20 and 40 successive steps, respec-
tively.64 Myosin V, which moves along actin filaments, makes about 50 steps before
it unbinds again corresponding to a run length of about 1.5µm.65 Myosin VI, on
the other hand, makes only about 9 successive steps, i.e., its average run length is
about 280nm.66

For a single motor stepping along a uniform filament as considered here, the
motor’s run time is equal to the motor’s binding time, i.e., the time during which
the motor is bound to the filament. In general, these two time scales can be differ-
ent. Two examples are provided by a single motor that encounters defects on the
filaments or by a cargo particle that is pulled by two antagonistic motor teams as
discussed in Sec. 4.2 below. In these latter cases, the run times are shorter than the
binding times.

The unbinding of a single motor is an activated process governed by a corre-
sponding energy barrier. In the presence of an external force F that acts to detach
the motor, this barrier is reduced by F�d where �d represents an appropriate molec-
ular length scale, which characterizes the elastic deformation of the motor molecule
required for its detachment. Therefore, the unbinding rate ωoff is expected to have
the general form

ωoff(F ) = κoff exp(�dF/kBT ) ≡ κoff exp(F/Fd) (2.24)

as follows from Kramers theory for activated processes with the zero-force unbinding
rate κoff and the detachment force

Fd ≡ kBT/�d. (2.25)

Now, let us again focus on the network representations for kinesin as displayed
in Fig. 7. In order to describe the unbinding of the motor from the filament, we must
extend these networks by unbound motor states as indicated by ‘UB’ in Fig. 7(b).
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It is convenient to label these unbound states by i = 0. Thus, if the motor dwells
in a state i > 0, its unbinding rate ωi0 should have the load dependent form

ωi0 = κi0 exp(�d,iF/kBT ) ≡ κi0 exp(F/Fd,i) ≡ κi0 exp(χi0F̄ ) (2.26)

which defines the zero-force unbinding rates κi0, the detachment forces Fd,i ≡
kBT/�d,i, the dimensionless parameters χi0 ≡ �d,i/�, and the dimensionless force
F̄ ≡ �F/kBT , compare (2.16). Intuitively, one may view the detachment force Fd,i

as the maximal force that the motor can sustain in motor state i.
The most weakly bound state of kinesin is provided by the (DD)-state. Thus,

in order to reduce the number of parameters, one may assume that the motor only
unbinds from the (DD) state with i = 7 as shown in Fig. 7(b). Furthermore, for
small values of F , the unbinding rate ωoff of kinesin is of the order of 1/s whereas
the transition rates between the different bound states i = 1, 2, . . . , 7 are of the
order of or larger than 1/(10 ms). This separation of time scales implies that the
kinesin motor has essentially attained the steady state of the 7-state network before
it starts to undergo transitions from the bound state i = 7 to the unbound state
i = 0 provided the load force F is sufficiently small. Its unbinding rate can then be
estimated by19

ωoff � P st
7 ω70 = P st

7 κ70 exp(F/Fd,7) = P st
7 κ70 exp(χ70F̄ ). (2.27)

This unbinding rate depends on the load force F both via the explicit exponential
factor and via the occupation probability P st

7 = P st
7 (F ). Comparison with relation

(2.24) then leads to the zero-force unbinding rate

κoff � P st
7 (0)κ70. (2.28)

Likewise, the overall detachment force Fd in (2.24) will, in general, differ from Fd,7

because of the force dependence of P st
7 .

The average run time 〈∆t〉 should decrease monotonically with increasing F and
vanishes in the limit of large F . In contrast, the average run length 〈∆x〉 = v〈∆t〉
vanishes already at the stall force F = Fs, at which the motor velocity v changes
sign, compare Fig. 8.

For kinesin, the F -dependence of the run length is displayed in Fig. 11(a) where
the experimental data of Ref. 23 are compared with calculations based on the
chemomechanical network in Fig. 7(b) as described in Ref. 19. The latter cal-
culations lead to the zero-force unbinding rate κ70 � 3/s and to the parame-
ter χ70 = 0.1, which implies the detachment force Fd,7 = kBT/�χ70 � 5 pN at
room temperature. On the other hand, if the data in Fig. 11(a) are directly fitted
as 〈∆x〉 ∼ exp(−F/Fd), one obtains the overall detachment force Fd � 3 pN as
deduced in Ref. 23.

For the 7-state network in Fig. 7(b), the zero-force unbinding rate κoff as given by
(2.28) is proportional to the steady state probability P st

7 that the motor occupies the
(DD) state. Inspection of Fig. 7(b) shows that this occupation probability decreases
as one increases the ATP concentration since one then decreases the flux from state
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Fig. 11. Average run length (or walking distance) 〈∆x〉 of kinesin as a function (a) of load force
F and (b) of ATP concentration. With increasing F , the run length first decays by an exponential

factor that is governed by the detachment force Fd and then vanishes at the stall force F = Fs,
compare Fig. 8. The experimenal data are from Ref. 23, the broken lines represent the behavior as
calculated in Ref. 19 for the network in Fig. 7(b). These latter calculations lead to the detachment
force Fd,7 � 5 pN while a simple exponential fit to the data implies Fd � 3 pN as explained in
the text.

(DE) with i = 1 to state (DD) with i = 7 relative to the flux from state (DE) to
state (DT) with i = 2. For the same reason, the probability P st

7 also decreases if
one decreases the ADP concentration. Thus, the 7-state model in Fig. 7(b) predicts
that the zero-force unbinding rate κoff depends on the nucleotide concentrations.

In order to check the assumed separation of time scales, one may consider the
unbinding process as another ‘absorption’ process with only one absorbing state
given by i = 0. If the motor starts in the initial state i = a, the probability
distribution for the process to exhibit the run time s ≡ ∆t is given by

ρab
a|0(s) =

∂

∂s
Pa0(s) = Pa7(s)ω70, (2.29)

compare relation (2.20). Now, let P in
a be the probability that the motor is initially

in state i = a. The probability distribution for the run time s is then given by

ρab
0 (s) =

∑
a�=0

P in
a Pa7(s)ω70, (2.30)

and the average run time 〈∆t〉 is equal to the first moment of this distribution.

3. Composite Walks of Single Motors

3.1. Directed walks interrupted by diffusive motion

Now, let us follow the movements of a single motor on length scales that exceed
its run length ∆x. The motor then undergoes composite walks, which consist of
directed movements along the filaments interrupted by periods of random, diffusive
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motion in the surrounding solution. In this section, we will discuss these motor
walks for the dilute transport regime of small motor concentration, for which the
bound motors do not ‘feel’ each other. As shown in Sec. 3.2.2 below, for single
motors without cargo, this dilute regime corresponds to a situation, in which the
motor’s run length is smaller than the average separation of the bound motors.
For single motors that pull a cargo particle of lateral extension �ca 	 �, the dilute
concentration regime is further reduced by a factor �/�ca.

The main features of composite walks by single motors or by cargo particles
pulled by a single motor can be understood from the following, simple scaling
argument.27 After placed onto a filament, a single motor steps along this filament
up to its run time ∆t, at which it unbinds. On time scales that are large compared to
this run time, the probability Pb to find the motor bound to the filament will decay
to zero. This probability can be estimated if one focusses on the diffusive motion in
the d⊥ directions perpendicular to the filament as described by the perpendicular
position vector �r⊥. This diffusion is governed by the Gaussian distribution

PGa(�r⊥) = (4πDubt)−d⊥/2 exp(−�r2
⊥/4Dubt) (3.1)

with the diffusion constant Dub for the unbound motor state. The bound state
probability Pb can then be estimated by the probability that the diffusive motor
returns to the filament at �r⊥ = 0 which leads to

Pb ∼ PGa(�r⊥ = �0) ∼ 1/t−d⊥/2. (3.2)

In the bound state, the motor has the average velocity v; in the unbound state, its
average velocity is zero. The effective transport velocity of the motor parallel to the
filament is then given by

veff = vPb ∼ 1/t−d⊥/2 (3.3)

which decays to zero as 1/t1/2 in two dimensions and as 1/t in three dimensions.
Therefore, the motor displacement parallel to the filament is proportional to t1/2

in two dimensions and to ln(t) in three dimensions.e

In order to describe these composite walks in a quantitative way, we will now
define their properties in terms of the single motor parameters as obtained in the
previous section.

3.2. Parameter mapping for motor walks

3.2.1. Continuous-time walks and transition rates

In Sec. 2.3, the chemomechanical coupling of stepping motors has been discussed in
terms of discrete motor states, that are distinguished by the chemical composition

eThe 3-dimensional case is a boundary case; in higher dimensions with d⊥ > 2, the motor has a
finite probability that it never returns to the filament, and the average displacement of the motor
parallel to the filament is equal to zero.
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of their catalytic motor domains. For kinesin, the corresponding chemomechanical
networks are displayed in Fig. 7. Some of these motor states are again shown in
Fig. 12(a), which illustrates a single mechanical step along the lattice of filament
binding sites.

Since we now want to describe the movement of the motor on length scales that
are large compared to the step size � = 8nm, we introduce a reduced description
and replace the motor molecule by a walker that steps along the lattice of binding
sites with certain transition rates as shown in Fig. 12(b). When the motor dwells
in a certain binding site, it can make a forward step with rate ωf , a backward step
with rate ωb, and unbinds from the filament with rate ωoff .f These rates can be
determined from experimentally accessible quantities.

As explained in the previous section, the unbinding rate ωoff is identical with
the inverse run time 1/〈∆t〉, see (2.22). The forward and backward stepping rates
ωf and ωb are related to the motor velocity v and to the ratio q of forward to
backward steps, compare Fig. 8, according to

v = �(ωf − ωb) and q = ωf/ωb (3.4)

which implies

ωf =
1

1 − 1/q

v

�
and ωb =

1
q − 1

v

�
. (3.5)

Note that these expressions do not contain any singularity for q = 1 since this value
corresponds to the stall force F = Fs, at which the velocity v vanishes as well, see

(state 1)      (state 6)

(state 5)      (state 6)

T
D

T
D

T

εo

ωb

ωon ωoff

ωf

πo

αβ

γ

(a)

(b)

(c)

EE

E

Fig. 12. (a) One forward step of two-headed kinesin along the lattice of binding sites provided by
one protofilament. Each step involves several motor states; for simplicity, only the states i = 1, 5
and 6 of the networks in Figs. 7(b) and 7(c) are displayed. As explained in Figs. 7, the catalytic
site of each head can be empty (E), contain one ATP molecule (T), or one ADP molecule (D).
The forward step occurs between state 1 and state 5; (b) Continuous-time walk with forward
stepping rate ωf , unbinding rate ωoff , binding rate ωon = κonC, and backward stepping rate ωb;
and (c) Discrete-time walk with forward stepping probability α, unbinding probability εo, binding
probability πo, backward probability β, and dwell probability γ.27

f In Ref. 7, the rate ωoff has been denoted by ε̄o.
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Fig. 8. If the stepping dynamics is described by a Markov process, the average dwell
time τdw of the motor at a certain filament site is then given by

τdw =
1

ωf + ωb + ωoff
. (3.6)

Finally, unbound motors that diffuse in the surrounding solution can bind to an
unoccupied filament site. The corresponding binding rate ωon, which is equal to the
number of motors that bind to a single filament site per unit time, depends on the
molar concentration C of the unbound motors. In order to discuss this binding rate,
let us consider a system with volume V that contains a certain number of filament
binding sites Nsi and a certain number of motors Nmo = Nb + Nub where Nb and
Nub represent the average number of bound and unbound motors, respectively. We
then obtain the molar concentration

C ≡ Nub/NAvV (3.7)

of the motors with Avogadro’s number NAv � 6×1023 (assuming that the filament
volume can be neglected) and the binding ratio

nb ≡ Nb/Nsi. (3.8)

The dissociation constant Cdis is then defined by the relation

nb ≈ C/Cdis for small C. (3.9)

For molar concentrations C >∼ Cdis, the binding ratio nb <∼ 1 and the binding sites
of the filaments are more or less covered by motors. For kinesin, e.g., the dissoci-
ation constant Cdis � 100 nM for typical in vitro assays. This molar concentration
corresponds to an average motor-motor separation of about 255nm within such
an assay. This implies that the filaments become already overcrowded with kinesin
motors for a rather dilute bulk concentration of this motor.

The dependence of the binding rate ωon on the molar concentration C is now
described by

ωon ≈ κonC for small C, (3.10)

which defines the binding rate constant κon. In the steady state, the binding flux
ωon must balance the unbinding flux ωoffnb. Using the asymptotic relations (3.10)
and (3.9), this flux balance equation becoms

ωon ≈ κonC ≈ ωoffnb ≈ ωoffC/Cdis (3.11)

for small C which implies that the binding rate constant κon is given by

κon =
ωoff

Cdis
=

1
〈∆t〉Cdis

. (3.12)

Since the unbinding rate ωoff as given by (2.24) depends on the load force F , so
does the product κonCdis.

For large ATP concentration and low load force, kinesin is characterized by the
run time 〈∆t〉 � 1 s, the velocity v � 800nm/s, and the dissociation constant Cdis �
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100nM. The relations (2.22), (3.5), (3.12) then lead to the zero-force unbinding rate
κoff � 1/s, the forward stepping rate ωf � 100/s, and the binding rate constant
κon � 10/(µM s).

3.2.2. Dilute transport regime

We can now give a precise definition of the dilute transport regime in which even
the bound motors can be treated as noninteracting particles. Let us consider the
general situation, in which the bound motor covers or occupies �mo/� binding sites.
The ratio �mo/� should typically assume a value between �mo/� = 1 for single-site
occupancy and �mo/� = 2 for two-site occupancy by the motor. In all cases, the
ratio �mo/� should be of order one.

If these motors are bound to the filaments with binding ratio nb, the probability
ρb that a single binding site is occupied by a motor is then given by

ρb = (�mo/�)nb ≈ �moC/�Cdis (3.13)

where the definition of the dissociation constant Cdis as given by (3.9) has been
used. The probability that the motor can reach the next binding site in the forward
direction is then (1− ρb) which is also equal to the probability that the motor can
make a forward step without bumping into another bound motor. Therefore, the
probability that the motor can make 〈∆x〉/� successive steps without interactions
with other bound motors is given by (1 − ρb)〈∆x〉/� ≈ exp[−〈∆x〉ρb/�]. The dilute
transport regime is defined by the criterion that this latter probability is close to
one which implies the inequality

ρb 
 �/〈∆x〉 (3.14)

for the single-site occupation probability ρb. It then follows from (3.13) that the
molar concentration C of the motors should belong to the concentration regime
defined by

C 
 �

�mo

�

〈∆x〉Cdis. (3.15)

Alternatively, we may consider the average separation 〈Lb,b〉 = �/nb of the
bound motors. The inequality (3.14) then implies that the dilute transport regime
corresponds to

〈Lb,b〉 	 (�mo/�)〈∆x〉. (3.16)

Since the ratio �mo/� >∼ 1, the dilute transport regime for a single motor without
cargo is also defined by the criterion that the average separation 〈Lb,b〉 of the bound
motors is large compared to their run length 〈∆x〉.

This line of arguments can be easily generalized to the situation of cargo particles
pulled by single motors. In this case, the relation (3.9) still applies provided C, Cdis,
and nb now denote the molar concentration, dissociation constant, and binding
ratio of the cargo particles. If these cargo particles cover �ca/� binding sites of the
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filament with �ca/� > �mo/�, the single site occupation probability ρb is now given
by ρb = (�ca/�)nb. It then follows from the inequality (3.14) for ρb that the dilute
transport regime of cargo particles pulled by a single motor corresponds to the
regime

C 
 �

�ca

�

〈∆x〉Cdis (3.17)

for the molar concentration of these cargo particles. The cargo size �ca can be much
larger than the step size � which implies that the dilute concentration regime can
be strongly reduced by the factor �/�ca.

3.2.3. Discrete-time walks and transition probabilities

In order to study the motor walks by stochastic simulations, it is convenient to use
discrete-time random walks which are defined by the time scale τo of an elementary
time stepg and by the transition probabilities as shown in Fig. 12(c).27, 28, 37 Within
one time step, the motor makes a forward step with probability α, a backward step
with probability β, and unbinds from the filament with unbinding probability εo;
in addition, it can simply dwell at the same binding site with dwell probability γ.
These probabilities satisfy the normalization condition α + β + γ + εo = 1.

The unbinding probability εo is related to the unbinding rate ωoff via

εo =
ωoffτo

1 + ωoffτo
or ωoff =

εo

1 − εo

1
τo

. (3.18)

The forward and backward stepping probabilities α and β satisfy

α =
ωfτo

1 + ωoffτo
or ωf =

α

1 − εo

1
τo

(3.19)

and

β =
ωbτo

1 + ωoffτo
or ωb =

β

1 − εo

1
τo

. (3.20)

The definition of the average dwell time τdw as given by (3.6) together with the
normalization condition α + β + εo = 1 − γ then imply the relation

τdw =
(1 − εo)τo

1 − γ
or γ = 1 − (1 − εo)

τo

τdw
. (3.21)

After the motor has detached from the filament, it undergoes undirected dif-
fusive motion in the surrounding solution. This diffusive motion can be described
in the framework of lattice walks as introduced in Ref. 27. The properties of these
walks can be solved analytically for the simplest system geometries28, 67 and can
be studied by mean field theory and simulations for more complex systems.27, 37, 68

gIn Refs. 27 and 37, the time scale of the elementary time step was denoted by τb and τ , respec-
tively. In fact, somewhat different parameter mappings were used in these two studies as explained
in App. C of Ref. 6.
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Alternatively, one may also study continuous diffusion in the unbound state as in
Ref. 69. For the lattice walks studied in Refs. 27, 28, and 37, the binding probabil-
ity πo was taken to be πo = 2πad/3 where πad/6 is the probability that the motor
walker binds to a certain filament site from a neighboring site on a simple cubic
lattice. The binding current or flux onto a single filament site is then given by πoρub

where ρub is the volume fraction of the motor heads defined by

ρub ≡ Nubche�
3/V = che�

3NAvC (3.22)

with a dimensionless coefficient che of order one and the molar motor concentration
C as in (3.7).h The asymptotic relation

(πo/τo)ρub ≈ κonC for small C (3.23)

then leads to the binding probability

πo = κonτoC/ρub = κonτo/che�
3NAv. (3.24)

In the simulations, the time scale τo of the elementary time step is chosen in such a
way that the dimensionless unbinding rate ωoffτo 
 1. It then follows from (3.18)
that εo ≈ ωoffτo which leads to the ratio

εo

πo
≈ ωoff

κon
che�

3NAv (3.25)

of the transition probabilities εo and πo. For kinesin with ωoff = 1/s, κon = 10/(µM
s), and � = 8nm, one obtains εo/πo � 0.6 × 10−5 for che = 2.

A more detailed description of the motor walks takes the nonexponential dwell
time distributions for the mechanical steps20 into account, as briefly described in
Sec. 2.3.6 above. Alternatively, one may study walks, for which the motors can
attain several internal states at each binding site.70 In the dilute regime, this refine-
ment does not affect the large scale properties of the composite walks. In contrast,
the internal motor dynamics does have observable effects on the traffic of mutually
exclusive motors.70

3.3. Composite motor walks in two and three dimensions

The simplest systems in which one can study composite motor walks are provided
by single filaments in unbounded geometries, i.e., without confining walls. In this
case, one can use Fourier-Laplace transforms of the 2- and 3-dimensional lattice
models in order to obtain analytical solutions for many quantities of interest.28, 67

These explicit solutions confirm the simple scaling behavior in (3.3) and extend the
results as obtained by similar scaling arguments in Ref. 27.

Instead of a single motor, let us consider the equivalent situation of an ensemble
of noninteracting motors with a probability distribution that is initially localized

hFor kinesin, the two heads are separated by a distance of order 
, which implies that both heads
occupy a volume che


3 with che � 2.
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at a single filament site. This initial distribution evolves with time into two distinct
distributions, one for the bound motors, the other for the unbound motors. Both
distributions are shifted in the forward direction parallel to the filament. For the
bound motors, this leads to the average displacement shown in Fig. 13(a). In addi-
tion, the stochastic nature of the motor movements leads to a broadening of both
the bound and the unbound motor distributions. This broadening can be charac-
terized by the variance of the motor displacements as shown in Fig. 13(b) for the
bound motors. In both Figs. 13(a) and 13(b), the analytical results are in excellent
agreement with Monte Carlo data.

The instantaneous diffusion coefficient Db of the bound motors parallel to the fil-
ament is given by the slope of the variance shown in Fig. 13(b). For large times, this
diffusion coefficient attains anomalously large values in two dimensions and exhibits
large logarithmic correction terms in three dimensions. Very similar behavior is
found for the diffusion of the unbound motors parallel to the filament. In addition,
the diffusion is anisotropic since the perpendicular diffusion coefficients are smaller
than the parallel ones. Therefore, the probability distributions for the unbound and
bound motors are elongated parallel to the filament and are compressed perpendic-
ular to it.28, 67

3.4. Composite walks within compartments

The asymptotic behavior of the composite motor walks depends on the geometry
of the compartment in which the motors move. In bead motility assays, one usually
considers filaments that are immobilized on the walls of large compartments as
shown in Fig. 14(a) and (b) which correspond to a half space and to a slab geometry,
respectively. Another interesting geometry is provided by tube-like compartments
as in Fig. 14(c)–14(e) which represent primitive models for axons.

Fig. 13. Composite motor walks in two and three dimensions: (a) Average displacement of bound
motors parallel to the filament; and (b) Variance of displacements of bound motors in units of the
step size 
 as functions of time in units of the elementary time step τo. The slope of the variance
in (b) defines the effective diffusion coefficient Db which is anomalously large. In both plots, the
curves represent analytical results for d = 2 and d = 3 dimensions whereas the data represent the
results of Monte Carlo simulations.28
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Fig. 14. Different compartment geometries with filaments (green lines): (a) Half space geometry
and (b) Slab geometry with a single filament immobilized on the walls of these compartments; (c,d)
Tube-like compartments with (c) open and (d) closed orifices enclosing a single, freely suspended
filament; and (e) Tube-like compartment with many parallel and unipolar filaments. The plus and
minus signs indicate the plus and minus ends of the filaments.

In all of these compartments, the effective motor velocity veff decays with time
t as soon as t exceeds the run time 〈∆t〉, see Fig. 15. In the half space, the effective
motor velocity veff exhibits the same power law decay ∼ 1/t as predicted by the
simple scaling relation (3.3) for three dimensions. In the slab geometry, the effective
velocity first decreases as in the half space until the motor feels the other wall of the
slab at time t = ∆t⊥. For longer times, the decay of the effective velocity follows
the power law ∼ 1/t1/2 as predicted by the simple scaling relation (3.3) for two
dimensions. For an open tube, the effective velocity is reduced by a constant factor,
which depends on the radius of the tube.27

In order to estimate the reduction of the effective velocity in a tube-like compart-
ment, let us consider such a compartment with length L and cross-sectional area Acr.
The compartment contains a dilute solution with Nmo motors and several paral-
lel filaments with Npr accessible protofilaments, as indicated in Fig. 14(b), which
implies Nsi = Npr(L/�) binding sites. In order to suppress effects from the two ends
of the tube, it is convenient to use periodic boundary conditions, which could be
experimentally realized by a torus-shaped tube. We then attain a steady state with
an average number of bound motors, Nb, and binding ratio nb = Nb/Nsi ≈ C/Cdis

for small C as in (3.9). Using the relations Nmo = Nb + Nub = Nsinb + V CNAv ≈
(Nsi + V CdisNAv)nb that follow from the definitions of binding ratio nb and molar
concentration C, one obtains the bound state probability

Pb = Nb/Nmo ≈ 1/(1 + CdisNAv�Acr/Npr). (3.26)

Furthermore, in the dilute regime with C 
 Cdis�/〈∆x〉, we can ignore any
interactions between the bound motors and take the bound state velocity to be
equal to the single motor velocity v. Therefore, the effective velocity of a single
motor parallel to the tube is now given by27, 37

veff = vPb = v/(1 + CdisNAv�Acr/Npr) (3.27)

which explicitly shows the reduction of the effective motor velocity by motor unbind-
ing since the dissocation constant Cdis = ωoff/κon is inversely proportional to the
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Fig. 15. Effective motor velocity veff parallel to the filament as a function of time for the half
space (circles), slab (diamonds), and tube geometry (crosses). Time is measured in units of the
elementary time scale τo, velocity in units of 
/τo with step size 
. Up to the run time t = 〈∆t〉, the
motors walk along the filament with the motor velocity v of the bound motor. The intermediate
time regime up to t = ∆t⊥ is characterized by diffusive excursions, which are small compared to
the thickness of the slab or the diameter of the tube. Finally, for large t, the effective velocity
decays as 1/t and 1/t1/2 for the half space and the slab, respectively, but attains a constant value
for the tube.27

run time 〈∆t〉, see (3.12). Therefore, the effective motor velocity veff attains its
maximal value, which is equal to the velocity v of the bound motor, in the limit of
large run times.

3.5. Active diffusion in slab-like compartments

So far, we have focussed on compartments containing single filaments or a group of
parallel and isopolar filaments as in Fig. 14. In general, one can use different types of
filament patterns in order to induce different types of motor movements. In partic-
ular, one may use slab-like compartments with crossed filament patterns as shown
in Fig. 16 in order to enhance the diffusion of the motors and their cargo.29 For the
pattern in Fig. 16(a), several filaments with random orientation are located in each
surface stripe. For the pattern in Fig. 16(b), all filaments have the same orientation
within one surface stripe but neighboring stripes have opposite orientation. Such
filament patterns can be constructed, e.g., by using chemically or topographically
structured surface domains covered by inactive motors or other chemical crosslink-
ers.71–77 Another interesting method is provided by microfabricated surface pillars,
to which the filaments can be attached.78

For the systems shown in Fig. 16, the motor and its cargo undergo non-directed
but enhanced diffusion. The effective diffusion constant Deff is primarily determined
by the competition of two length scales: the mesh size, say L⊥, of the filament
pattern and the average run length 〈∆x〉 of the motors.29 If the mesh size exceeds
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Fig. 16. Different patterns of filaments that lead to active and enhanced diffusion of motors: (a)
Striped surface domains, each of which contains immobilized filaments with both orientations; and
(b) Striped surface domains, for which all filaments within one stripe have the same orientation
but neighboring stripes have opposite orientation. The arrows indicate the direction of walking
motors.

the run length, i.e., for 〈∆x〉 < L⊥, the effective diffusion constant behaves as
Deff ∼ v〈∆x〉. On the other hand, if the run length exceeds the mesh size, i.e.,
for 〈∆x〉 > L⊥, the diffusion constant is governed by the mesh size and one has
Deff ∼ L⊥v which corresponds to a random walk with effective step size L⊥ and
effective step time L⊥/v.

For a cargo particle in solution, the unbound diffusion constant is inversely
proportional to the linear cargo size R because of Stokes friction arising from the
viscosity of the solution. In contrast, the effective diffusion constant for the active
diffusion of molecular motors is hardly affected by the viscosity of the solution and,
thus, is rather insensitive to the size of the cargo particle. Therefore, for micrometer-
sized cargo particles in water, this effective diffusion constant for active diffusion
can exceed the unbound diffusion constant by several orders of magnitude.29

For a given type of motor, the maximal value for the effective diffusion constant
Deff is Deff ∼ v〈∆x〉. Thus, in order to increase this coefficient, one must either
increase the bound state velocity v or the run length 〈∆x〉 of the motors. One rather
effective way to increase the run length is to use cooperative transport of cargo by
several motors as discussed in the next section.

4. Cargo Transport by Teams of Molecular Motors

In vivo, stepping motors are responsible for the intracellular transport of various
types of cargo particles such as vesicles, organelles, and filaments. This cargo trans-
port is typically performed by several motor molecules as revealed by electron
microscopy79, 80 and single particle tracking.81–84 In some cases, the transport is
uni-directional as one would expect if all motors that pull on the cargo belong to
the same motor species. In many cases, the cargo moves in a bi-directional manner,
however, which implies that it is pulled by two antagonistic motor teams corre-
sponding to two different motor species.

In Sec. 4.1, we discuss uni-directional transport of a single cargo particle by one
team of N identical motors. Compared to the behavior of a single motor, such a
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cargo particle exhibits a run length that increases rather strongly with N and an
apparant stall force that increases sublinearly with N .

In Sec. 4.2, bi-directional transport of a single cargo particle is considered, in
which this particle is pulled by two teams of plus and minus motors. The two motor
teams perform a stochastic tug-of-war that is characterized by strongly fluctuating
forces acting on each motor arising from the force balance between the two teams.
As a result, one finds seven distinct motility regimes, which are determined by the
numbers N+ and N− of plus and minus motors as well as by the single motor
parameters. All available experimental data on bi-directional cargo transport can
be understood in terms of such a tug-of-war.

4.1. Uni-directional transport by one motor species

Now, consider a single cargo particle with N motors, which are firmly attached to
this particle, see Fig. 17. When in contact with the filament, each motor has a finite
run length and run time which implies that the actual number n of pulling motors
is not constant but varies with time between zero and N . Thus, if we include the
unbound state with n = 0, the cargo can be in N +1 different states (n), which are
distinguished by the number n of active pulling motors.

If the cargo is in state (n), the binding of one motor to the filament leads to
state (n+1) and the unbinding of one motor from the filament to state (n−1). The
transition from state (n) to state (n − 1) occurs with unbinding rate ωn,n−1, the
transition from (n) to (n+1) with binding rate ωn,n+1. The probabilities Pn = Pn(t)
that the cargo particle is in state (n) at time t then evolve according to the master
equation30

∂

∂t
Pn = −∆Jn,n+1 − ∆Jn,n−1 (4.1)

with

∆Jn,n+1 ≡ Pnωn,n+1 − Pn+1ωn+1,n (4.2)

and

∆Jn,n−1 ≡ Pnωn,n−1 − Pn−1ωn−1,n. (4.3)

Fig. 17. Uni-directional transport of a cargo particle by N = 4 identical motors. The motors are
firmly attached to the particle but unbind from and rebind to the filament. Therefore, the actual
number n of pulling motors varies with time between n = 0 and n = N .
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In the steady state, the probability distribution Pn = P st
n satisfies

P st
n+1ωn+1,n = P st

n ωn,n+1 (4.4)

for 0 ≤ n ≤ N −1. This relation corresponds to detailed balance between the states
(n+1) and (n) and reflects the fact that all movements of the bound cargo particle
begin and end with n = 0 and that every transition from (n) to (n + 1) implies a
backward transition at some later time. It is also implicitly assumed here that the
binding and unbinding rates are independent of the transition rates for stepping
along the filament.

In vivo, the pulling motors are attached to their cargo via a long and flexible
stalk. In addition, electron micrographs indicate that the spacing of the motors on
the cargo is comparable to their length. We now focus on such a ‘dilute’ regime, in
which the motors do not interfere with each other apart from the fact that they are
attached to the same cargo. In this case, the transition rates ωn,n−1 and ωn,n+1,
have the simple form30

ωn,n−1 = nωoff and ωn,n+1 = (N − n)ωon (4.5)

where the combinatorial factors n and N − n arise from the different possibilities
to unbind or bind a motor when the cargo particle is in state (n). The unbinding
rate ωoff is taken to be equal to the unbinding of a single motor as given by (2.22).i

The binding rate ωon, on the other hand, reflects the effective motor concentration,
Ceff , between the cargo particle and the filament. Thus, the binding rate of a single
motor attached to the cargo should have the form

ωon = κonCeff . (4.6)

As mentioned, kinesin is characterized by the unbinding rate ωoff � 1/s and the
binding rate constant κon � 10/(µMs). In Ref. 30, we used the estimate ωon = 5/s
for kinesin as suggested by experiments45 in which the motors pull membrane tubes.
This value for the binding rate ωon corresponds to an effective molar concentration
Ceff � 0.5µM or an average separation between the motors of about 150 nm.

4.1.1. Regime of low load force

As emphasized before, the number of pulling motors changes with time in a stochas-
tic manner. It is then instructive to consider the average number 〈n〉 of pulling
motors where the average is taken over all bound states of the motor. If the cargo
particle does not experience a load force or, more generally, if this load force is suf-
ficiently small, this average number can be calculated explicitly for noninterfering

iStrictly speaking, the unbinding motor heads always experience some constraints arising from the
attachment of the other end of the motor to the cargo particle. These constraints will be ignored
here.
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motors. If the cargo particle is initially bound to the filament by a single motor,
i.e., n(t = 0) = 1 , one obtains the expression30

〈n〉 =
1

1 + koff

(1 + koff)N

(1 + koff)N − kN
off

N ≤ N (4.7)

which depends on the maximal motor number N and on the dimensionless desorp-
tion coefficient for zero force as given by

koff ≡ ωoff(F = 0)/ωon = ωoff/κonCeff = Cdis/Ceff (4.8)

with the motor’s dissociation constant Cdis as defined in (3.9). Since the average
in (4.7) is taken over the bound states of the cargo particle, one has 1 ≤ 〈n〉 ≤
N ; the limiting values 〈n〉 = 1 and 〈n〉 = N are attained for large and small
koff , respectively. Furthermore, the relation (4.7) leads to 〈n〉 ≈ N/(1 + koff) for
large N .

When the noninterfering motors pull on the cargo in the absence of load, they
move with their single motor velocity v. Thus, in this situation, the cargo particle
also has velocity vca = v for all cargo states (n). The average run length 〈∆xca〉 of
the cargo particle is then given by30

〈∆xca〉 ≈ (v/ωoffN)(1/koff)N−1 (4.9)

and the correspondig unbinding rate by

ωoff,ca = v/〈∆xca〉 ≈ ωoffNkN−1
off (4.10)

for small zero-force desorption coefficient koff = ωoff/ωon 
 1, i.e., for strongly
binding motors. Thus, in this case, the run length increases exponentially and the
unbinding rate decreases exponentially with increasing number of motors. It is
interesting to note that the two relations (4.9) and (4.10) are also valid for a cargo
particle with N = 1 and then reduce to 〈∆xca〉 = 〈∆x〉 and ωoff,ca = ωoff . If the
cargo is pulled by up to N kinesin motors with koff � 0.2, the expression as given
by (4.9) leads to the estimate 〈∆xca〉 � 5N−1/N µm which implies that N = 7
or N = 8 kinesin molecules are sufficient to attain an average run length in the
centimeter range.

4.1.2. Run length distributions

In addition to the average value 〈∆xca〉 of the run length, the model described in the
previous subsection can also be used to calculate the full run length distribution
Ψ(∆xca),30 which develops a ‘fat’ tail for N > 1 as shown in Fig. 18. In this
figure, the theoretical distributions are compared with experimental ones that have
been obtained in vitro by preparing carboxylated polystyrene beads covered with
kinesin.32 In order to vary the motor coverage of the beads, the mass density c of the
kinesin molecules in the incubation chamber is changed for fixed bead concentration.
The coverage increases linearly over a certain mass density range until saturation
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Fig. 18. Run length distributions Ψ(∆xca) of cargo particles that have been incubated at different
mass densities c of kinesin. In each panel, the columns represent the experimental data, and the
full lines the theoretical curves as obtained from (4.16). The seven curves for the mass densities
0.1µg/ml ≤ c ≤ 2.5µg/ml have been obtained using the density scale co = 0.79µg/ml and the
binding rate ωon = 5.1/s. This implies that the average number 〈n〉 of pulling motors increases
from 〈n〉 = 1.1 for c = 0.1µg/ml to 〈n〉 = 3.2 for c = 2.5µg/ml. For concentrations c that are
comparable to or larger than 5µg/ml, the linear relation (4.12) between 〈N〉 and c is no longer
fulfilled.32

is reached as deduced from dynamic light scattering experiments. The maximal
coverage is estimated to be about 130 motors per bead.

When a bead prepared in this way is brought into contact with immobilized
microtubules, only a relatively small fraction of the attached motors can pull simul-
taneously on the bead. The maximal number of motors that can do so corresponds
to the number N as defined for a single cargo particle in the previous subsection.
Because of the used preparation method, this number varies from bead to bead.
Thus, if one observes a large number Nbea of different beads, the behavior of this
ensemble of cargo particles involves the additional distribution Pbea(N) for the
number N . The simplest choice for Pbea(N) is a Poisson distribution

PPo(N) ≡ (c/co)Ne−c/co

N !
(4.11)

which leads to the average number

〈N〉 = c/co (4.12)

where the density scale co is used as a fit parameter and obtained from the detailed
comparision between theory and experiment, see Fig. 18. Since the average number
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〈N〉 turns out to be relatively small, it is convenient to use the truncated Poisson
distribution as given by32

Pbea(N) =
1
Z
PPo(N) for 1 ≤ N ≤ Nmax (4.13)

with the normalization constant

Z ≡
Nmax∑
N=1

PPo(N). (4.14)

The maximal number Nmax is chosen in such a way that all Nbea beads, for which
the run length is determined in the experiments, are likely to have N ≤ Nmax

motors attached to them. This condition can be ensured by

Nbea
PPo(Nmax)

(1 − PPo(0))
≥ 1 and Nbea

PPo(Nmax + 1)
(1 − PPo(0))

< 1. (4.15)

The theoretical run length distributions Ψ(∆xca) as shown in Fig. 18 have been
obtained by first calculating the run length distributions ΨN(∆xca) for each N ≤
Nmax and then taking the average over N which leads to

Ψ(∆xca) =
Nmax∑
N=1

Pbea(N)ΨN (∆xca). (4.16)

These theoretical distributions were fitted to seven experimental distributions using
only two fit parameters, namely the density scale co and the binding rate ωon. The
best fit was obtained for co = 0.79µg/ml and ωon = 5.1/s, see Fig. 18.

As a result, the maximal motor number Nmax is found to vary between Nmax = 2
and Nmax = 7 for mass densities c between 0.1µg/ml and 2.5µg/ml corresponding
to molar concentrations between 0.27 and 6.7 nM. In the same concentration range,
the average number 〈n〉 of pulling motors is found to lie between 〈n〉 = 1.1 and
〈n〉 = 3.2 motors.

All distributions Ψ(∆xca) in Fig. 18 decrease monotonically with increasing run
length ∆xca. Such a monotonic decay is expected since these run length distri-
butions were obtained for beads that bind after diffusing towards the filaments.
Indeed, such a deposition method implies that the beads are initially connected
to the filaments by a single motor molecule corresponding to the initial condi-
tion Pn(t = 0) = δn,1.30, 32 Recently, a run length distribution has been reported
for which all runs exceeded a minimal length of 6µm.31 The motility assay used
in this latter study was similar to the one in Ref. 32 but the deposition of the
kinesin-coated beads onto the microtubules was performed by optical tweezers. In
the concentration regime, in which the bead carries several motors, this deposition
method is likely to lead to an initial state of the bound bead, in which this bead is
connected to the microtubule by several motors. In such a situation, the run length
distribution can develop a maximum but this maximum is expected to lie at a run
length below 6µm.
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A more direct comparison between theory and experiment would be possible
if one prepared cargo particles with a precise number N > 1 of motors attached
to each of them. One appealing approach consists in crosslinker molecules, each
of which binds N > 1 motors. One could then study the attachment of these
crosslinkers in the dilute limit, in which the cargo particle carries at most one
crosslinker. So far, such a preparation method has not been developed.

4.1.3. Force dependence of uni-directional transport

If the cargo particle does not experience a load force, noninterfering motors unbind
and rebind in a statistically independent manner. In contrast, in the presence of
such a force, even noninterfering motors become coupled via the cargo. If the cargo
is subject to the force F , the n active motors share this force, and each single motor
feels the reduced force

F1 ≡ F/n (4.17)

which now depends on n. Since n changes with time in a stochastic manner, so does
the force F1 acting on each motor. In order to understand the consequence of this
coupling between the motors, one has to take the force dependence of the different
transition rates into account.

The unbinding rate ωoff of a single motor increases exponentially with the load
force F , see (2.24). Thus, a single motor that experiences the load force F1 = F/n

unbinds from the filament with unbinding rate ωoff = κoff exp(F/nFd) where Fd

denotes the detachment force of a single motor as before. It then follows from (4.5)
that the transition rate from cargo state (n) to state (n − 1) is given by

ωn,n−1 = ωoff(n) = nκoffeF1/Fd = nκoffeF/nFd . (4.18)

Thus, all unbinding rates increase exponentially with increasing load and the cor-
responding force scale nFd depends on the number n of pulling motors.

As long as the cargo particle is bound to the filament, i.e., for n ≥ 1, the
effective motor concentration Ceff between the cargo and the filament, which enters
the binding rate ωon of a single motor attached to the cargo, see (4.6), cannot
be substantially reduced by the load force F . The simplest assumption that is
consistent with this constraint is to consider the force-independent binding rate

ωn,n+1 = ωon(n) = (N − n)κonCeff(F = 0) = (N − n)ωon, (4.19)

compare (4.6).
For noninterfering motors as considered here, the steady state probabilities P st

n

to find the cargo particle in state (n) are now given by the explicit expression

P st
n =

(
1

koff

)n

e−HnF/Fd

(
N
n

)
P st

0 (4.20)
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with the zero-force desorption coefficient koff as in (4.8), the harmonic numbers

Hn ≡
n∑

m=1

1
m

, (4.21)

the binomial coefficient
(

N
n

)
, and the normalization condition

P st
0 +

N∑
n=1

P st
n = 1 (4.22)

as follows from (4.4).j Since the harmonic numbers Hn satisfy the inequalities cEu+
ln(n) < Hn ≤ 1 + ln(n) with Euler’s constant cEu � 0.577, the second factor in
(4.20) behaves as

e−HnF/Fd ∼ 1/nF/Fd (4.23)

as a function of n.
Because the noninterfering motors interact only via their common cargo, the

steady state probabilities P st depend only on the detachment force Fd but not
on the stall force Fs, which characterizes the force-velocity relationship of a single
motor. In general, this relationship can be written as

v = V(F ) with V(F = Fs) = 0 (4.24)

where V(F ) is a monotonically decreasing function of F between 0 ≤ F ≤ Fs,
compare Fig. 8(a). Since the force acting on the cargo particle is equally shared by
the n pulling motors, they all experience the same force F1 = F/n and, thus, have
the same velocity equal to the instantaneous cargo velocity

vca,n(F ) = V(F/n) = V(F1). (4.25)

As a pulling motor unbinds from the filament, the force acting on a single motor
increases from F1 = F/n to F1 = F/(n − 1) and the instanteneous cargo velocity
decreases from V(F/n) to V(F/(n − 1)). Likewise, as a detached motor rebinds to
the filament, the instanteneous velocity increases from V(F/n) to V(F/(n + 1)). In
the steady state, the average cargo velocity vca is then given by

vca(F ) =
N∑

n=1

P st
n vca,n(F ) ∼

N∑
n=1

(
1

koff

)n 1
nF/Fd

(
N
n

)
V(F/n) (4.26)

where the n-independent factor P0 ≤ 1 has been omitted in the second relation.
With increasing load force F , each term in the sum decreases because of (i) the
factor 1/nF/Fd and (ii) the reduction of the instantaneous velocity V(F/n). For
n ≤ F/Fs, the instantaneous velocity V(F/n) is small and vanishes if one ignores

jFor F = 0, the probability P st
0 for the unbound state is given by P st

0 = 1/(1 + ωon/ωoff )N .
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backward steps.k Thus, for F > mFs, only cargo states (n) with n > m contribute
significantly to the sum in (4.26), and their contribution is reduced by the factor
1/nF/Fd < 1/mF/Fd . As a result, the cargo velocity seems to vanish at an apparent
stall force F̂s,N , which is smaller than the true stall Fs,N ≡ NFs. For kinesin with
koff = 0.2 and Fs = 6pN, for example, one finds F̂s,5 � 20 pN and Fs,5 = 30pN as
well as F̂s,10 � 30 pN and Fs,10 = 60pN.30 Therefore, the apparent stall force F̂s,N ,
which may be viewed as the force generated by the team of N motors, increases
with N but is substantially smaller than Fs,N = NFs for large N .

In Ref. 30, both the average cargo velocity vca(F ) and the probability distri-
bution for the instantaneous velocity of the cargo have been calculated for kinesin
with koff � 0.2. With increasing load, the latter distribution is shifted towards
smaller velocity values, becomes broader, and develops several peaks in agreement
with recent experimental observations82–84 on the in vivo transport of vesicles and
organelles.

4.2. Bi-directional transport by two motor species

In biological cells, the motion of cargo particles along microtubules is often observed
to be bi-directional in the sense that the particle frequently switches its direction
of motion. Since both kinesin and dynein motors are bound to these particles, it
is rather natural to assume that the bi-directional motion arises from the compe-
tition between these two motor species. The molecular mechanism underlying this
competition has been controversial for some time.

Two scenarios have been discussed:33, 34 (i) Tug-of-war between two motor
teams: Each motor species tries to move the cargo into its own direction, thereby
performing a tug-of-war on the cargo as illustrated in Fig. 19; and (ii) Coordination
by a putative protein complex: Such a complex could prevent opposing motors from
being active at the same time, thereby excluding state (0) in Fig. 19. The observed
complexity of bidirectional transport has led many authors to reject a tug-of-war
scenario and to search for a coordination complex. However, as recently shown in
Ref. 35, this conclusion was premature because the stochastic nature of a realistic
tug-of-war leads to rather complex transport behavior as observed experimentally.

Thus, let us consider a team of plus and a team of minus motors that pull
in opposite directions; the direction of instantaneous motion is determined by the
stronger team as in the two states (+) and (−) of Fig. 19. However, since the
number of motors that actually pull varies with time in a stochastic manner for
both motor species, the weaker team may suddenly become the stronger one which
reverses the direction of motion. Indeed, because of the stochastic unbinding and
rebinding of the motors, each individual motor experiences a strongly fluctuating
load force. The instanteneous value of this force depends both on the number of

kIf one takes backward steps into account, the terms with n < F/Fs give a small and negative
contribution to the sum in (4.26).
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Fig. 19. Cargo transport by 2 plus (blue) and 2 minus (yellow) motors: possible configurations
(0), (+), and (−) of motors bound to the microtubule. For configuration (0), the motors block
each other so that the cargo does not move. For configuration (+) and (−), the cargo exhibits fast
plus and minus motion, respectively.35

motors that pull in the opposite direction and on the number of motors that pull
in the same direction since the latter number determines how many motors share
the force generated by the opposing team.

4.2.1. Single motor properties and sign conventions

In order to describe the movements of both motor species in a consistent manner,
we have to be careful about the signs of their velocities and the signs of the forces
experienced by them. We will use the convention that (i) the velocity of a plus
motor is positive in the absence of force, which implies that the zero-force velocity
of a minus motor is negative; and (ii) a load force F is positive if it acts against the
forward direction of the plus motors which is identical to the backward direction of
the minus motors. Both conventions have also been used in the previous sections
for the plus motor kinesin. In addition, we will also take the detachment and stall
forces of both motor species to be positive.

Each motor species is now characterized by its force-dependent unbinding rate
ωoff , which defines the detachment force Fd as in (2.24), its binding rate constant κon

as in (3.10) and (3.12), and its force-velocity relationship as in (4.24), which involves
the stall force Fs. Thus, if a single plus motor feels the load force F = F1+ > 0, its
unbinding rate is given by

ωoff,+ = κoff,+eF1+/Fd,+ (4.27)

which depends on the detachment force Fd,+ of this motor. The binding rate of
each plus motor is taken to be

ωon,+ = κon,+C+,eff (4.28)

where C+,eff denotes the effective molar concentration of the plus motors between
the cargo particle and the filament, again assumed to be independent of load force.
Furthermore, the force-velocity relationship of the plus motors is now given by

v+ = V+(F1+) > 0 for F1+ < Fs,+

= V+(F1+) < 0 for F1+ > Fs,+

(4.29)

with their stall force Fs,+ defined by

V+(F1+ = Fs,+) = 0. (4.30)
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If the minus motors feel a load force F = F1− < 0, they are characterized by
the unbinding rate

ωoff,− = κoff,−e|F1−|/Fd,− , (4.31)

which involves the corresponding detachment force Fd,−. The binding rate of a
single minus motor is also taken to be force-independent and given by

ωon,− = κon,−C−,eff (4.32)

with the effective concentration C−,eff of minus motors between the cargo particle
and the filament. Finally, the minus motors are characterized by the force-velocity
relationship

v− = V−(|F1−|) < 0 for |F1−| < Fs,−
= V−(|F1−|) > 0 for |F1−| > Fs,−,

(4.33)

and the implicit equation

V−(|F1−| = Fs,−) = 0 (4.34)

for the stall force Fs,−.
It is important to emphasize that almost all of these parameters can be deter-

mined from a systematic analysis of experimental data. For the plus motor kinesin,
for example, the zero-force unbinding rate κoff,+ � 1/s, the detachment force
Fd,+ � 3 − 5 pN, the binding rate constant κon,+ � 10/(µMs), and the stall force
Fs,+ � 6 − 7 pN as mentioned before. The only quantities that are difficult to
measure directly are the effective molar concentrations C+,eff and C−,eff .

4.2.2. Stochastic tug-of-war

The stochastic tug-of-war between the plus and minus motors can be described by
an appropriate generalization of the model as given by (4.1) to the case of two motor
species. The cargo particle now carries N+ plus motors and N− minus motors, and
the cargo can attain (N+ + 1)(N− + 1) states (n+, n−) which are characterized by
the actual numbers n+ and n− of plus and minus motors that pull at the same
time. These states form a square lattice as shown in Fig. 20.

When the cargo particle dwells in state (n+, n−), it can undergo up to four
different transitions. The unbinding of a plus motor from this state is governed by
the rate

ω(n+, n−|n+ − 1, n−) ≡ ωoff,+(n+, n−) = n+κoff,+eF1+/Fd,+ , (4.35)

the unbinding of a minus motor by the rate

ω(n+, n−|n+, n− − 1) ≡ ωoff,−(n+, n−) = n−κoff,−e|F1−|/Fd,− . (4.36)

In addition, the binding rates of a plus and a minus motor are equal to

ω(n+, n−|n+ + 1, n−) ≡ ωon,+(n+, n−) = (N+ − n+)ωon,+ (4.37)
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Fig. 20. State space of cargo with N+ = 2 plus and N− = 2 minus motors. The (N+ +1)(N−+1)
states are labeled by (n+, n−) corresponding to n+ plus (blue) and n− minus (yellow) motors,
that simultaneously pull on the cargo. These states form a square lattice with 0 ≤ n+ ≤ N+ and
0 ≤ n− ≤ N−.

and

ω(n+, n−|n+, n− + 1) ≡ ωon,−(n+, n−) = (N− − n−)ωon,−. (4.38)

So far, the two unbinding rates in (4.35) and (4.36) have been expressed in terms
of the two forces F1+ and F1− experienced by a single plus and minus motor. It is
important to note, however, that these two forces are not independent of each other,
but are strongly coupled during cargo transport as soon as both motor species are
active, i.e., as soon as both n+ > 0 and n− > 0. This can be understood from the
force balance explained in the next subsection.

4.2.3. Force balance between two motor species

Thus, let us consider a cargo state (n+, n−) with n+ > 0 and n− > 0. The forces
experienced by a single plus and a single minus motor are denoted by F1+ and F1−
as before. The total force experienced by the n+ plus motors is then equal to

Fn+ = n+F1+ > 0. (4.39)

Likewise, the total force experienced by the minus motors is

Fn− = n−F1− < 0. (4.40)
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In the absence of an external load force, Newton’s third law implies thatl

Fn+ = |Fn−| or n−F1+ = n+|F1−|. (4.41)

For a given state (n+, n−), one can distinguish three cases depending on the rela-
tive size of n+Fs,+ and n−Fs,−. The first case with n+Fs,+ > n−Fs,− corresponds to
plus motor dominance. Likewise, the second case with n−Fs,− > n+Fs,+ describes
minus motor dominance. Both cases are smoothly connected by the special case
with n−Fs,− = n+Fs,+.

For plus motor dominance with n+Fs,+ > n−Fs,−, the plus motors step forward
if a single plus motor experiences the load force F1+ < Fs,+ which implies that the
n+ plus motors feel the load Fn+ = n+F1+ < n+Fs,+. In addition, the minus motors
step backward if a single minus motor experiences the load force |F1−| > Fs,− and
the n− minus motors feel the load |Fn−| = n−|F1−| > n−Fs,−. Because of the
relation Fn+ = |Fn−| as given by (4.41), these two inequalities can be combined
into

n−Fs,− < Fn+ = |Fn−| < n+Fs,+ (4.42)

which is a necessary condition for forward steps of the plus motors and backward
steps of the minus motors. For minus motor dominance with n−Fs,− > n+Fs,+, the
same kind of reasoning leads to the expression

n+Fs,− < Fn+ = |Fn−| < n−Fs,− (4.43)

which is a necessary condition for forward steps by the minus motors and backward
steps of the plus motors. The two conditions (4.42) and (4.43) can now be combined
into the general condition

min(n+Fs,+, n−Fs,−) ≤ Fn+ = |Fn−| ≤ max(n+Fs,+, n−Fs,−) (4.44)

where the equalities include the special case with n+Fs,+ = n−Fs,−.
The two inequalities in (4.44) imply that the force Fn+ experienced by the n+

plus motors can be expressed as

Fn+ = (1 − λ)n−Fs,− + λn+Fs,+ with 0 < λ < 1. (4.45)

What remains to be done is to determine the parameter λ. This can be achieved
by matching the instantaneous velocities of the plus and minus motors.

lIn the presence of an external load force Fex, the force balance becomes Fn+ = |Fn−| + Fex.
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4.2.4. Matching of instantaneous velocities

When the cargo particle is in state (n+, n−), its instantaneous velocity vca(n+, n−)
must be equal to the instanteneous velocities of both the plus motors and the minus
motors, which implies

vca(n+, n−) = V+(F1+) = V−(|F1−|). (4.46)

The second equality is equivalent to the implicit equation

V+(Fn+/n+) = V−(Fn+/n−) (4.47)

for the force Fn+ where the force balance equation |Fn−| = n−|F1−| = Fn+ has
been used again. If Fn+ is expressed in terms of the parameter λ as in (4.45), the
matching condition (4.47) becomes an implicit equation for this parameter.

The matching condition V+(Fn+/n+) = V−(Fn+/n−) can be solved graphi-
cally. In order to do so, one has to plot the two rescaled force-velocity relationships
V+(Fn+/n+) and V−(Fn+/n−) as a function of Fn+. An example for such a graph-
ical solution is shown in Fig. 21 for the cargo state (n+, n−) = (3, 2) and for
piece-wise linear force-velocity relationships. In the latter case, one may also obtain
an explicit relation for the parameter λ, see Ref. 35.

In this way, one can determine the total load force Fn+ = Fn+(n+, n−) experi-
enced by the n+ plus motors for all cargo states (n+, n−). The force Fn+ can then
be used to calculate the forces F1+ = Fn+/n+ and |F1−| = Fn+/n− as experienced

Fig. 21. Graphical solution of the matching condition (4.47) for the instantaneous cargo velocity
v = vca(n+, n−) and the total load force F = Fn+ experienced by the n+ plus motors in state
(n+, n−) = (3, 2) with Fn+ = |Fn−|. Both the force-velocity relationship v+ = V+(F/n+) for the
plus motors (blue lines) and the corresponding relationship v− = V−(F/n−) for the minus motors
(red lines) have been taken to be piece-wise linear. The intersection point of these two functions
determines the cargo velocity v = vca(n+, n−) and the total load force F = Fn+ as indicated by
the broken lines.
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by a single plus and minus motor, respectively. When these expressions are inserted
into the relations (4.35) and (4.36), one obtains the rate

ωoff,+(n+, n−) = n+κoff,+eFn+(n+,n−)/n+Fd,+ , (4.48)

for the unbinding of one plus motor from state (n+, n−) and the corresponding rate

ωoff,−(n+, n−) = n−κoff,−eFn+(n+,n−)/n−Fd,− (4.49)

for the unbinding of one minus motor. These two expressions show explicitly that
these unbinding rates provide a direct coupling between the motor numbers n+

and n−.

4.2.5. Different motility states of cargo particles

The stochastic tug-of-war model described in the previous subsections leads to
rather complex dynamic behavior related to seven different motility states. These
motility states can be distinguished by the qualitative shape of the steady state
distributions P st(n+, n−) for the two motor numbers n+ and n−. First, there are
three different states for which the distribution P st(n+, n−) has a single maximum.
This single maximum may be located at the boundaries of the (n+, n−)-plane with
(n+, n−) = (n, 0) or (n+, n−) = (0, n), compare Fig. 20. These states represent
fast plus directed or minus directed motion. Alternatively, this maximum may be
located away from the boundaries of the (n+, n−)-plane and then corresponds to a
state with a strongly reduced cargo velocity as determined by the velocity of the
backward stepping motors. In particular, when it is located along the diagonal of
the (n+, n−)-plane with n+ = n− or n+ = n− ± 1, the maximum represents a
‘no motion’ state, in which the two motor species block each other and the cargo
particle exhibits, on average, no directed motion.

Second, the cargo can attain three different motility states for which the distri-
bution P st(n+, n−) has two local maxima. Both of these maxima may be located at
the boundaries of the (n+, n−)-plane and then lead to the switching between fast
plus directed and fast minus directed motion, i.e., to bi-directional transport with-
out pauses. In addition, the distribution P st(n+, n−) may have one maximum away
from the boundary of the cargo’s state space and one maximum at this bound-
ary. These latter distributions represent uni-directional transport in the plus or
minus direction interrupted by prolonged pauses (or strongly reduced transport).
Finally, the distribution P st(n+, n−) may exhibit three local maxima corresponding
to bi-directional transport interrupted by pauses.

As one changes the single motor parameters and/or the motor numbers N+ and
N−, the system may undergo a transition from one motility state to another. The
most important single motor parameters that determine the cargo’s motility state
are the two desorption coefficients

koff,+ ≡ κoff,+

ωon,+
and koff,− ≡ κoff,−

ωon,−
(4.50)
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as well as the force ratios

f+ ≡ Fs,+

Fd,+
, f− ≡ Fs,−

Fd,−
and fs ≡ Fs,+

Fs,−
. (4.51)

4.2.6. Motility states for symmetric tug-of-war

A particularly instructive case is provided by a ‘symmetric’ tug-of-war that is
defined by the following two simplifying features: (i) Equal numbers of plus and
minus motors, i.e., N+ = N−; and (ii) Identical single motor parameters for plus
and minus motors apart from their prefered directions. This latter feature implies
the equalities

koff,+ = koff,− ≡ koff , f+ = f− ≡ f and fs = 1 (4.52)

for the desorption coefficients and force ratios and, thus, leads to a useful reduction
in the number of parameters.

As one varies the force ratio f and the desorption coefficient koff , the cargo par-
ticle exhibits three different motility states as shown in Fig. 22 for N+ = N− = 4:
(i) ‘No motion’ states for small values of the force ratio f corresponding to weak
motors. In these states, the motor number distribution P st(n+, n−) has a single
maximum along the diagonal of the (n+, n−)-plane with n+ = n− or n+ = n− ± 1;
(ii) Bi-directional transport states without pauses for large values of f and des-
orption coefficients koff that exceed a certain threshold value. The corresponding
motor number distribution has two maxima of equal height at (n+, n−) = (n, 0)
and (n+, n−) = (0, n); and (iii) Bi-directional transport states with pauses for rela-
tively large values of f and small values of koff . In this latter case, the distribution
P st(n+, n−) has three local maxima at (n+, n−) = (n, 0), (n+, n−) = (n′, n′), and
(n+, n−) = (0, n).

The different behavior of the three distinct motility regimes is illustrated in
Fig. 23 for the three parameter values (f, koff) corresponding to the crosses A, B, and
C in Fig. 22. State A with (f, koff) = (2/3, 1/5) belongs to the ‘no motion’ regime,
state B with (f, koff) = (6/3, 1/5) to the regime of bi-directional transport without
pauses, and state C with (f, koff) = (4.75/3, 0.4/5) to the regime of bi-directional
transport with pauses, see the three columns in Fig. 23. Each column contains the
motor number distribution P st(n+, n−), a typical trajectory of the cargo particle,
and the distribution of instantaneous cargo velocities.

As shown in the left column of Fig. 23, the distribution P st(n+, n−) for motility
state A has a single maximum located at (n+, n−) = (3, 3). This state exhibits
no motion of the cargo apart from small fluctuations in both directions, and an
instantaneous velocity distribution with a single peak at zero cargo velocity. In
contrast, state B has a motor number distribution with two maxima at (n+, n−) =
(4, 0) and (n+, n−) = (0, 4). In this state, the cargo performs fast directed motion
both in the plus and in the minus direction but this motion does not exhibit any
pauses. The latter property also follows from the velocity distribution, which is
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Fig. 22. Motility diagram for the symmetric tug-of-war of N+ = 4 plus and N− = 4 minus
motors as a function of the force ratio f and the desorption coefficient koff . Both motor species
have identical single motor parameters apart from their prefered direction. Depending on the ratio
f = Fs/Fd of stall to detachment force and on the desorption coefficient koff = κoff/ωon, the cargo
particle exhibits three different types of motility states: (i) ‘No motion’ states (green) for small
values of the force ratio f . The motor number distribution P st(n+, n−) has a single maximum
located at (n+, n−) = (n, n) or (n+, n−) = (n, n±1). For sufficiently small values of the desorption
coefficient koff , the number n attains its maximal value n = 4 and decreases monotonically with
increasing koff ; (ii) Bi-directional transport states without pauses (yellow) for large values of f
and desorption coefficients koff that exceed a certain threshold. The corresponding distribution
P st(n+, n−) has two maxima located at (n+, n−) = (n, 0) and (n+, n−) = (0, n); and (iii) Bi-
directional transport states with pauses (red) for large f and small koff . The three states labeled
by A, B, and C are described in more detail in Fig. 23.35

bimodal with two peaks of equal height at vca = ±1µm/s. Finally, state C is
characterized by a motor number distribution with three maxima at (n+, n−) =
(4, 0), (n+, n−) = (3, 3), and (n+, n−) = (0, 4). The cargo trajectories now exhibit
fast motion in both directions as well as prolonged pauses leading to a velocity
distribution with three peaks.

As one varies the motor numbers N+ and N− with N+ = N− ≡ N1, the qualita-
tive features of the motility diagram and of the corresponding motility states of the
cargo as illustrated in Fig. 22 and Fig. 23 for N1 = 4 remain unchanged as has been
shown in Ref. 85 by explicit simulations for 2 ≤ N1 ≤ 10.m As the motor number
N1 is increased, the distributions P st(n+, n−) exhibit sharper and sharper maxima,

mThe case N1 = 1 is special since it does not exhibit any states corresponding to the regime of
bi-directional transport with pauses.
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Fig. 23. Three motility states A, B, and C of a symmetric tug-of-war between N+ = 4 plus
and N− = 4 minus motors corresponding to the three crosses in the motility diagram of Fig. 22:
(A) ‘No motion’ state: (A1) Motor number distribution P st(n+, n−) with a single maximum at
(n+, n−) = (3, 3); (A2) Typical cargo trajectory with small excursions around the start position;
and (A3) Distribution of instantaneous cargo velocities with a single peak at zero velocity. (B) Bi-
directional transport state without pauses: (B1) Motor number distribution with two maxima at
(n+, n−) = (4, 0) and (n+, n−) = (0, 4); (B2) Typical cargo trajectory with fast directed motion
both in the plus and in the minus direction; and (B3) Velocity distribution with two peaks at
cargo velocities vca = ±1 µm. (C) Bi-directional transport state with pauses: (C1) Motor number
distribution with three maxima at (n+, n−) = (4, 0), (n+, n−) = (3, 3), and (n+, n−) = (0, 4);
(C2) Typical cargo trajectory with fast directed motion both in the plus and in the minus direction
interupted by prolonged pauses; and (C3) Distribution of instantaneous cargo velocity with three
peaks.35

and the switching times between these maxima increase exponentially with N1 as
has been numerically studied up to N1 = 80 . This implies that the tug-of-war
system leads to nonequilibrium phase transitions in the limit of large N1.

5. Traffic of Motors and Cargo Particles

In this final section, we briefly review the traffic of motors and cargo particles that
arises when many motors and/or cargo particles are bound to the filaments and
the bound motors and particles start to bump into each other. Depending on their
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interactions and on the compartment geometry, the motors can then form various
spatio-temporal patterns such as traffic jams and undergo nonequilibrium phase
transitions between different transport patterns.

5.1. Overcrowding of filaments and traffic jams

As mentioned before, single motors and cargo particles pulled by single motors
(N = 1) behave as noninteracting particles if their molar concentrations belong
to the dilute transport regimes as given by (3.15) and (3.17), respectively. The
second relation, which involves the lateral size �ca of the cargo particles, will also
approximately apply to the more general case of cargo particles pulled by N motors
as long as the average step size of these cargo particles is of the order of �.

The dilute transport regime for single motors is given by C 
 C∗ with

C∗ ≡ (�/〈∆x〉)Cdis (5.1)

as follows from (3.15) for lateral motor size �mo � �. For kinesin motors with step
size � = 8nm, average run length 〈∆x〉 = 1µm, and dissociation constant Cdis =
100nM, the crossover concentration C∗ � 1 nM. For motor concentrations C > C∗,
the bound motors start to interact with each other, and these interactions become
particularly strong when the filaments become overcrowded for concentrations C >∼
Cdis as follows from the definition (3.9) of the dissocation constant.

From the theoretical point of view, the overcrowding of filaments by motors
should lead to traffic jams.27 These jams are particularly pronounced in tube-like
compartments that represent primitive models of axons.27, 37–39 Because of such
traffic jams, the current or flux of the bound motors exhibits a maximum as one
increases the total number of motors in the system. For a long tube-like compart-
ment, e.g., the maximum is reached for half filling of the filament sites37 corre-
sponding to binding ratio nb = 1/2.n It is remarkable that the largest binding ratio
reached by the kinesins as studied experimentally in Ref. 47, is about nb = 1/2.
This seems to imply that these kinesin motors are able to avoid traffic jams in
some way. As previously discussed in Ref. 7, several possible mechanisms for such a
behavior can be envisaged: (i) The lateral size of stepping kinesins is increased com-
pared to static kinesins; (ii) Stepping kinesins could increase their unbinding rate
by bumping into each other; (iii) Stepping kinesins could reduce the binding rate
for kinesin from the bulk solution, e.g., because of hydrodynamic interactions. Such
a mechanism would imply that the effective binding rate decreases with increasing
motor velocity; and (iv) The motors experience mutual interactions that lead to a
certain preferred separation of the stepping kinesins. Further experiments seem to

nThe half filling condition applies to simple motor walks as described in Sec. 3 provided the motors
occupy a single filament site and z ≡ 
mo/
 = 1. If the motors occupy z > 1 binding sites, the
maximum current is already reached for binding ratios nb = 1/(z +

√
z) < 1/2. On the other

hand, if the motors occupy a single site but can dwell in two internal states, the maximum current
is reached for binding ratios nb > 1/2 as shown in Ref. 70.
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be necessary in order to clarify this issue. Jams of molecular motors have also been
observed for other in vitro systems as described in Refs. 44–46.

Traffic jams are also expected to occur for the traffic of cargo particles. If the
cargo particles are pulled by a single motor species, the cargo traffic is expected to
be rather similar to the traffic of single motor molecules. For cargo particles pulled
by two motor species, on the other hand, one would intuitively expect that jams can
be reduced by bi-directional transport. Indeed, if a jam builds up in one direction,
e.g., because of an obstacle, the cargo particles at the very end of the jam may then
start to move in the opposite direction and, in this way, to dissolve the jam. This
effect can be studied in more detail if one maps the bi-directional motion of many
cargo particles onto lattice walks with both forward and backward steps, compare
Fig. 12(c).

5.2. Nonequilibrium phase transitions in motor traffic

In our previous studies of motor traffic, we encountered several examples of nonequi-
librium phase transitions.37, 38, 48 Such transitions are interesting because a small
change in a parameter leads to a huge response of the motor system and its trans-
port properties.

The first examples for phase transitions in motor traffic were theoretically found
for tube-like compartments with open orifices.37 These transitions occur as one
changes the boundary densities at these two orificies and are intimately related to
the phase transitions found for asymmetric simple exclusion processes (ASEPs) in
one dimension. The latter processes have been studied for a variety of systems, see,
e.g., Refs. 61 and 86–91; an extensive review of ASEPs is contained in Ref. 92.
In the last couple of years, several groups have also studied 1-dimensional ASEPs
in contact with particle reservoirs,93–95 which are closely related to the tube-like
systems introduced in Refs. 27, 37.

A special kind of phase transition occurs in a half-open tube as shown in
Fig. 24(a).38 The left orifice is open, the right orifice is closed, a geometry that

+

-

(2)

(1)

(a)                                                     (b)
Fig. 24. Tube-like compartments that lead to nonequilibrium phase transitions in motor traffic:
(a) Half-open tube with one motor species. When bound to the filament, the motors move towards
the open orifice on the left. For small motor velocity, a jam builds up in front of this orifice. The
jam length diverges in the limit of vanishing velocity or vanishing ATP concentration;38 and (b)
Tube with two motor species that walk into opposite directions and compete for the same binding
sites on the filaments. This system undergoes a symmetry breaking phase transition, at which
each filament becomes covered by either plus or minus motors.48
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resembles the geometry of an axon. The closed orifice corresponds to the synaptic
terminal whereas the motor reservoir at the open orifice corresponds to the cell
body, where the motors are synthesized. Let us focus on the situation in which
the tube contains only minus motors that would correspond to dynein motors in
axons. The minus motors enter the tube by diffusing through the left orifice. Once
they are bound to the filament, they walk back towards this orifice. As a result of
this competition, the minus motors penetrate only up to a finite distance from the
left orifice. As one decreases the velocity, e.g., by decreasing the ATP concentra-
tion and, thus, the chemical energy input ∆µ, this penetration increases and the
minus motors form a traffic jam along the filament in front of the left orifice. This
jam length diverges as 1/v for small v.38 In these two examples of traffic phase
transitions, the only interaction between the motors is provided by their mutual
exclusion.

Another type of transition, that can be explored by varying the motor con-
centrations, occurs in systems with two species of motors that walk in opposite
directions.48 The simplest geometry is again provided by a tube-like compartment
with periodic boundary conditions as shown in Fig. 24(b). Alternatively, one may
consider systems with a constant density of unbound motors. As long as the motor-
motor interactions are purely repulsive, the flux of bound motors is determined
by the majority species, and the system evolves smoothly as one varies the motor
concentrations. The situation becomes more interesting if one includes another,
effectively attractive interaction between the bound motors as suggested by decora-
tion experiments96–99 in which filaments are decorated by motors and bare filament
segments are observed to coexist with highly decorated segments. If the strength
of this interaction is described by the paramter q, the system undergoes a traffic
phase transition at a critical value q = qc.48 This phase transition occurs between
two states with a spontaneously broken symmetry, for which one motor species is
essentially excluded from the filaments. As one varies the bulk composition of the
motors, the total motor flux develops a hysteresis loop across the phase boundary.
In addition, if the system contains groups of isopolar filaments, the broken symme-
try is directly visible via the coexistence of traffic lanes with opposite directionality
as indicated in Fig. 24(b).

6. Summary and Outlook

In this article, we have reviewed recent work on the behavior of molecular motors
that step along cytoskeletal filaments. Three motility regimes have been discussed
in some detail: (i) Directed motion of single motors bound to the filaments in Sec. 2;
(ii) Composite walks of these motors on length scales that are large compared to
their run length in Sec. 3; and (iii) Cooperative transport by teams of molecular
motors, which can lead to fast uni-directional or bi-directional motion in the Sec. 4.
In addition, traffic jams and phase transitions in motor traffic have been briefly
discussed in Sec. 5.



April 30, 2009 15:34 WSPC/204-BRL 00094

128 R. Lipowsky et al.

The general theoretical framework for the chemomechanical coupling of molec-
ular motors, which determines the energy conversion by these motors, was summa-
rized in Sec. 2. This framework is based on chemomechanical networks as shown in
Fig. 5 and Fig. 7.17, 18 The network models for kinesin in Fig. 7 are able to describe
all experimental data as obtained from single motor measurements.19 In particular,
they lead to a quantitative description of the motor velocity and run length as func-
tions of load force, see Fig. 8 and Fig. 11, which determine the motor’s stall and
detachment force, respectively. For the 6-state model in Fig. 7(c), the stall force can
be calculated explicitly as a function of chemical energy input and, thus, of ATP
concentration, see relation (2.16). Another interesting set of quantities that has
been calculated for this 6-state model is provided by the dwell time distributions
for the mechanical steps as discussed in Sec. 2.3.6. These dwell times are difficult
to measure with a high temporal resolution but the available data are again well
described by this model without introducing any additional fit parameters.20

In Sec. 3, the reduced description of the motor molecule as a ‘walker’ has been
discussed.27, 37, 38 The motor undergoes composite walks consisting of directed (or
biased) stepping when bound to the filament and diffusive (or random) walks in
its unbound state away from the filament. The corresponding parameter mapping
of the single motor parameters as discussed in Sec. 2 onto continuous-time and
discrete-time walks is described in Sec. 3.2. The introduction of the motor’s disso-
ciation constant in (3.9) leads to a precise definition of the dilute transport regime
as discussed in Sec. 3.2.2. In tube-like compartments as shown in Fig. 14(c) and
(e), the effective transport velocity of the motor increases with the run length of
the motor as follows from the explicit expression (3.27) for this velocity. When in
contact with patterns of crossed filaments as in Fig. 16, the motors undergo active
diffusion,29 which is characterized by a strongly enhanced diffusion coefficient.

A single team of identical motors leads to uni-directional cargo transport as
reviewed in Sec. 4.1. This cooperative transport mode has several advantages. First,
the run length of the cargo particle is strongly increased with increasing motor
number, see the explicit expression (4.9) and the comparison between theory and
experiment in Fig. 18.30, 32 In the absence of additional forces, such an increased run
length leads to a larger effective velocity of the cargo particle, compare (3.27), and
to an increased diffusion constant for active diffusion as follows from the discussion
in Sec. 3.5. Second, compared to a single motor, a team of N motors can generate
a larger force. This follows from the explicit expression (4.26) for the average cargo
velocity in the presence of a load force. If a single motor has stall force Fs, the
team of N identical motors has an apparent stall force that is of the order of NFs

for relatively small N but substantially smaller than NFs for large N .30 Third,
cooperative transport by N motors offers additional possibilities for regulation.
One example is provided by binding defects of the filaments such as tau proteins
that reduce the rebinding rate of the detached motors.

In eukaryotic cells, vesicles and other cargo particles often carry both kinesins
and dyneins, which leads to bi-directional transport along microtubules. The
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observed transport behavior can be understood in terms of a stochastic tug-of-
war35 between the two motor teams as explained in Sec. 4.2. In order to define
such a tug-of-war in a consistent manner, one has to take the instantaneous force
balance between the two motor teams into account, see Sec. 4.2.3, which enters the
transition rates between the different cargo states, see Sec. 4.2.4. The stochastic
tug-of-war leads to rather complex transport behavior as observed experimentally.
In general, one finds seven distinct motility regimes, which can be distinguished by
the qualitative features of the motor number distribution P st(n+, n−) as explained
in Sec. 4.2.5. A particularly simple case is provided by a symmetric tug-of-war, see
Sec. 4.2.6, because the symmetry reduces the number of possible motility states
from seven to three. The corresponding motility diagram is shown in Fig. 22 and
the motility behavior for the different regimes is illustrated in Fig. 23. The general,
asymmetric case is discussed in Refs. 35 and 85.

The molecular motors considered here are found in all eukaryotic cells and pro-
vide the main machinery for force production and cargo transport in biological
systems. On the one hand, we would like to obtain a systematic understanding
of these biological processes. On the other hand, such an understanding is also
necessary in order to construct useful biomimetic systems that are based on molec-
ular motors. One example is provided by biomimetic transport systems that are
inspired by the transport in axons since such systems represent promising alter-
natives to microfluidic devices, in which transport is coupled to flow induced by
external pressure. Compared to pressure-induced flow, the transport by motors has
several advantages such as: (i) Cargo transport is hardly affected by the viscosity of
the aqueous solution and, thus, remains efficient even in a dense solution of macro-
molecules; (ii) Using two different motor species, different types of cargo can be
simultaneously transported in both directions; and (iii) This transport system does
not require rigid compartment walls but works in soft and flexible compartments
as well. Another application of motors is their active diffusion, by which one can
increase the diffusion constant of micrometer-sized cargo particles by several orders
of magnitude as explained in Sec. 3.5. When integrated into existing biochips for
DNA and RNA hybridization, these transport systems would act to increase the
hybridization rates.

In general, active biomimetic systems based on molecular motors and filaments
should have many applications in bioengineering, pharmocology and medicine. Such
applications include sorting devices for biomolecules, motile drug delivery systems,
molecular shuttles in ‘labs-on-a-chip’, and switchable scaffolds for tissue engineer-
ing. Thus, molecular motors and filaments are likely to become key components in
the emerging soft nanotechnology.
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Glossary of Abbreviations and Symbols

α probability for forward step of motor as in (3.19).
Acr cross-sectional area of tube.
ADP adenosin diphosphate.
[ADP] molar concentration of ADP.
ADP/P product of ATP cleavage, abbreviated as Θ.
ATP adenosin triphosphate.
[ATP] molar concentration of ATP.
β probability for backward step of motor as in (3.20).
B backward cycle of single motor.
c mass density of motors in incubation chamber.
co mass density scale for motors as in (4.12).
C molar concentration of motor molecules around filament.
Cdis dissociation constant for motor unbinding as in (3.9).
Ceff effective motor concentration between cargo and filament.
Cν cycle of network graph labeled by index ν.
Cd

ν directed cycle or dicycle of network graph with direction d.
d direction of dicycle with d = ±.
d⊥ dimensions perpendicular to filament; in practise, d⊥ = 1 or 2.
D dissipative slip cycle of single motor.
Db diffusion constant for bound motor.
Dub diffusion constant of unbound motor.
∆Jij local excess flux of transition |ij〉 with ∆Jij = Jij − Jji.
∆J(Cd

ν ) dicycle excess flux as in (2.10).
∆J st(Cd

ν ) dicycle excess flux in steady state.
∆µ chemical energy input from a single ATP hydrolysis as in (2.3)
∆µ(Cd

ν ) chemical energy change during dicycle Cd
ν .

∆µ̄ reduced chemical energy input with ∆µ̄ = ∆µ/kBT .
∆t run time of motor at filament.
〈∆t〉 average run time of motor.
∆x run length (or walking distance) of motor along filament.
〈∆x〉 average run length of motor.
εo unbinding probability of single motor as in (3.18).
F load force acting on the motor; F > 0 for resisting load.
Fd detachment force of single motor.
Fd,i detachment force for single motor in state i.
Fd,+ detachment force of single plus motor.
Fd,− detachment force of single minus motor.
Fs stall force of single motor.
Fs,+ stall force of single plus motor.
Fs,− stall force of single minus motor.
F1 load force acting on a single motor.
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F1+ load force acting on a single plus motor.
F1− load force acting on a single minus motor.
Fn+ load force acting on n+ plus motors.
Fn− load force acting on n− minus motors.
F forward cycle of single motor.
γ dwell probability of single motor as in (3.21).
Hn harmonic numbers as in (4.21).
i, j discrete states of a single motor bound to a filament.
|ij〉 transition or directed edge (di-edge) from state i to state j.
〈ij〉 edge between states i and j.
Jij probability flux from motor state i to state j with Jij = Piωij .
J(Cd

ν ) dicycle flux as in (2.11).
J st(Cd

ν ) dicycle flux in steady state.
koff dimensionless desorption coefficient of motor as in (4.8).
κoff zero-force unbinding rate of motor as in (2.24).
κon binding rate constant of motor as in (3.10).
kB Boltzmann constant.
Keq equilibrium constant for ATP hydrolysis as in (2.4) and (2.5).
� step size of motor.
�ca number of filament sites occupied by cargo particle.
�mo number of filament sites occupied by single motor.
〈Lb,b〉 average distance of bound motors.
M number of catalytic motor domains.
µ chemical potential.
µ(X) chemical potential for chemical species X as in (2.2).
n number of identical motors that actively pull on a cargo particle.
n− number of active minus motors with 0 ≤ n− ≤ N−.
n+ number of active plus motors with 0 ≤ n+ ≤ N+.
(n) state of cargo that is pulled by n identical motors.
nb binding ratio as defined in (3.9).
N total number of motors attached to a single cargo particle.
NAv Avogadro’s number.
Nb number of motors bound to filament.
Nmo total number of motors in the assay with Nmo = Nb + Nub.
Nsi total number of filament binding sites.
Nub number of unbound motors in the assay.
N− total number of minus motors attached to a single cargo particle.
N+ total number of plus motors attached to a single cargo particle.
N1 number of one motor species for a symmetric tug-of-war.
Nbea number of beads included in run length statistics.
(n+, n−) state of cargo that is pulled by n+ plus and n− motors.
ν label for all cycles in the network.
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ωij transition rate for transition from motor state i to state j.
ωn,n+1 transition rate for transition from cargo state (n) to state (n + 1).
ωb transition rate for backward mechanical step as in (3.5).
ωf transition rate for forward mechanical step as in (3.5).
ωoff force-dependent unbinding rate of motor as in (2.22).
ωoff,− unbinding rate of minus motor as in (4.31).
ωoff,+ unbinding rate of plus motor as in (4.27).
ωon concentration-dependent binding rate of motor as in (3.10).
ωon,− binding rate of minus motor as in (4.32).
ωon,+ binding rate of plus motor as in (4.28).
P inorganic phosphate.
Pb probability that motor is bound to filament as in (3.26).
Pi probability that motor is in internal state i.
P st

i probability Pi in steady state.
Pij(t) probability for the motor to go from i to j during time t.
P st

ij probability for the motor to go from i to j for large t.
Pn probability that a cargo particle is in state n.
PGa Gaussian distribution.
PPo Poisson distribution.
πo binding probability for single filament site as in (3.24).
Πω(Cd

ν ) transition rate product along dicycle Cd
ν as in (2.8).

Ψ average run length distribution of cargo as in (4.16).
ΨN run length distribution for cargo with N motors.
Q reduced heat released by the motor.
q Sec. 2: ratio of forward to backward steps.
q Sec. 5: strength of attractive interaction between bound motors.
Q̄ reduced heat released by the motor with Q̄ = Q/kBT .
Q(Cd

ν ) heat released by the motor during completion of dicycle Cd
ν .

ρb probability that filament site is occupied as in (3.13).
ρub volume fraction of motor heads as in (3.22).
ρbf probability distribution for forward-after-backward steps as in (2.21).
ρff probability distribution for forward-after-forward steps as in (2.21).
t time.
T temperature.
τo elementary time scale for discrete-time motor walks.
Θ short-hand notation for ADP/P state of motor domain.
v average velocity of single motor in its bound state.
V volume.
V(F ) force-velocity relationship as in (4.24).
V−(F ) force-velocity relationship for minus motors as in (4.33).
V+(F ) force-velocity relationship for plus motors as in (4.29).
vca average velocity of cargo particle in its bound state.
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vca,n instantaneous velocity of cargo particle in cargo state (n).
vca(n+, n−) instantaneous velocity of cargo particle in cargo state (n+, n−).
Wme mechanical work performed by the motor.
Wme(Cν) mechanical work performed by the motor during dicycle Cν .
X chemical species ATP, ADP or P.
[X ] activity or molar concentration of chemical species X .
[X ]∗ activity scale for chemical species X as given by (2.2).
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